Skip to main content

Advertisement

Log in

Rifampicin Loaded Mannosylated Cationic Nanostructured Lipid Carriers for Alveolar Macrophage-specific Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this study, cationic mannosylated nanostructured lipid carriers (Man-NLCs) were developed for the targeted delivery of rifampicin to alveolar macrophages.

Methods

Rifampicin loaded Man-NLCs (RFP-Man-NLCs) and rifampicin loaded unmodified nanostructured lipid carriers (REP-NLCs) were prepared using thin film homogenization method and characterized by particle size, polydispersity index, zeta potential, transmission electron microscopy, encapsulation efficiency, pharmacokinetics, biodistribution, cell specific targeting, cytotoxicity and inflammatory response.

Results

RFP-Man-NLCs and REP-NLCs obtained displayed a size distribution around 160 nm (PDI <0.30) with positive charges of approximately 30 mV. The encapsulation efficiency of RFP was above 90%. In the biodistribution study, both RFP-Man-NLCs and RFP-NLCs, compared with the commercially available rifampicin solution, displayed superior lung-targeting ability. Compared to REP-NLCs, RFP-Man-NLCs exhibited significantly higher uptake efficiency in NR8383 cells and alveolar macrophages, which achieved cell-specific targeting. In addition, RFP-Man-NLCs were demonstrated to be a safe formulation with minimum toxicity and no inflammatory response.

Conclusions

RFP-Man-NLCs provided an alternative strategy for selectively delivering rifampicin to alveolar macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMs:

Alveolar macrophages

AUC:

Area under the curve

CLz:

Plasma clearance

Cmax :

maximum concentration

DAPI:

4′,6-diamidino-2-phenylindole

DDAB:

Dimethyldioctadecylammonium bromide

DMSO:

Dimethyl sulfoxide

EPC:

Purified ovolecithin

FITC-DHPE:

Fluorescein isothiocyanate labeled DHPE

MCT:

Medium chain triglyceride

MRT:

Mean retention time

MTT:

3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide

OCT:

Octadecylamine

PDI:

Polydispersity index

REP-NLCs:

Rifampicin loaded nanostructured lipid carriers

RFP:

Rifampicin

RFP Solution:

Rifampicin commercial solution

RFP-Man-NLCs:

Cationic mannosylated rifampicin nanostructured lipid carriers

t1/2z :

Half-life

TEM:

Transmission electron microscopy

References

  1. Aal AMA, El-Mashad N, Magdi D. Tuberculosis problem in Dakahlia Governorate, Egypt. SAARC J Tuberc Lung Dis HIV/AIDS. 2013;10:43–9.

    Google Scholar 

  2. Fauci AS. Infectious diseases: considerations for the 21st century. Clin Infect Dis. 2001;32:675–85.

    Article  CAS  PubMed  Google Scholar 

  3. Bermudez LE. Use of liposome preparation to treat mycobacterial infections. Immunobiology. 1994;191:578–83.

    Article  CAS  PubMed  Google Scholar 

  4. Vyas S, Kannan M, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269:37–49.

    Article  CAS  PubMed  Google Scholar 

  5. Natarajan K, Kundu M, Sharma P, Basu J. Innate immune responses to< i> M. tuberculosis</i> infection. Tuberculosis. 2011;91:427–31.

    Article  CAS  PubMed  Google Scholar 

  6. McKinney JD, zu Bentrup KH, Muñoz-Elías EJ, Miczak A, Chen B, Chan W-T, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–8.

    Article  CAS  PubMed  Google Scholar 

  7. Zahrt TC. Molecular mechanisms regulating persistent< i> Mycobacterium tuberculosis</i> infection. Microbes Infect. 2003;5:159–67.

    Article  CAS  PubMed  Google Scholar 

  8. Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F, Hashida M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release. 2008;125:121–30.

    Article  CAS  PubMed  Google Scholar 

  9. Chuan J, Li Y, Yang L, Sun X, Zhang Q, Gong T, et al. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. J Nanoparticle Res. 2013;15:1–9.

    Google Scholar 

  10. Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med. 2003;167:1472–7.

    Article  PubMed  Google Scholar 

  11. Mohr JF, McKinnon PS, Peymann PJ, Kenton I, Septimus E, Okhuysen PC. A retrospective, comparative evaluation of dysglycemias in hospitalized patients receiving gatifloxacin, levofloxacin, ciprofloxacin, or ceftriaxone. Pharmacother J Hum Pharmacol Drug Ther. 2005;25:1303–9.

    Article  CAS  Google Scholar 

  12. Shi S, Han L, Gong T, Zhang Z, Sun X. Systemic delivery of microRNA‐34a for cancer stem cell therapy. Angew Chem. 2013;125:3993–7.

    Article  Google Scholar 

  13. Braeckmans K, Buyens K, Bouquet W, Vervaet C, Joye P, Vos FD, et al. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett. 2010;10:4435–42.

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Tseng W, Stolz DB, Wu S, Watkins S, Huang L. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther. 1999;6:585–94.

    Article  CAS  PubMed  Google Scholar 

  15. Ishiwata H, Suzuki N, Ando S, Kikuchi H, Kitagawa T. Characteristics and biodistribution of cationic liposomes and their DNA complexes. J Control Release. 2000;69:139–48.

    Article  CAS  PubMed  Google Scholar 

  16. Han J, Wang Q, Zhang Z, Gong T, Sun X. Cationic bovine serum albumin based self assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small. 2014;10:524–35.

  17. Kutscher HL, Chao P, Deshmukh M, Singh Y, Hu P, Joseph LB, et al. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release. 2010;143:31–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Deshmukh M, Kutscher HL, Gao D, Sunil VR, Malaviya R, Vayas K, et al. Biodistribution and renal clearance of biocompatible lung targeted poly (ethylene glycol)(PEG) nanogel aggregates. J Control Release. 2012;164:65–73.

  19. Lawlor C, Kelly C, O’Leary S, O’Sullivan M, Gallagher P, Keane J, et al. Cellular targeting and trafficking of drug delivery systems for the prevention and treatment of MTb. Tuberculosis. 2011;91:93–7.

    Article  CAS  PubMed  Google Scholar 

  20. Briones E, Isabel Colino C, Lanao JM. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release. 2008;125:210–27.

    Article  CAS  PubMed  Google Scholar 

  21. Chellat F, Merhi Y, Moreau A, Yahia LH. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials. 2005;26:7260–75.

    Article  CAS  PubMed  Google Scholar 

  22. Largent B, Walton K, Hoppe C, Lee Y, Schnaar R. Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces. J Biol Chem. 1984;259:1764–9.

    CAS  PubMed  Google Scholar 

  23. Li P, Chen S, Jiang Y, Jiang J, Zhang Z, Sun X. Dendritic cell targeted liposomes–protamine–DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine. Nanotechnology. 2013;24:295101.

    Article  PubMed  Google Scholar 

  24. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.

    Article  CAS  PubMed  Google Scholar 

  25. Guo Y, Liu X, Sun X, Zhang Q, Gong T, Zhang Z. Mannosylated lipid nano-emulsions loaded with lycorine-oleic acid ionic complex for tumor cell-specific delivery. Theranostics. 2012;2:1104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Melo L, Queiroz R, Queiroz M. Automated determination of rifampicin in plasma samples by in-tube solid-phase microextraction coupled with liquid chromatography. J Chromatogr B. 2011;879:2454–8.

    Article  CAS  Google Scholar 

  27. Zhao D, Gao ZD, Han DE, Li N, Zhang YJ, Lu Y, et al. Influence of rifampicin on the pharmacokinetics of salvianolic acid B may involve inhibition of organic anion transporting polypeptide (oatp) mediated influx. Phytother Res. 2012;26:118–21.

    Article  CAS  PubMed  Google Scholar 

  28. Cui Z, Han S-J, Huang L. Coating of mannan on LPD particles containing HPV E7 peptide significantly enhances immunity against HPV-positive tumor. Pharm Res. 2004;21:1018–25.

    Article  CAS  PubMed  Google Scholar 

  29. Hattori Y, Kawakami S, Lu Y, Nakamura K, Yamashita F, Hashida M. Enhanced DNA vaccine potency by mannosylated lipoplex after intraperitoneal administration. J Gene Med. 2006;8:824–34.

    Article  CAS  PubMed  Google Scholar 

  30. Chakravarthy KV, Davidson BA, Helinski JD, Ding H, Law W-C, Yong K-T, et al. Doxorubicin-conjugated quantum dots to target alveolar macrophages and inflammation. Nanomed Nanotechnol Biol Med. 2011;7:88–96.

    Article  CAS  Google Scholar 

  31. Jones B, Dickinson P, Gumbleton M, Kellaway I. Lung surfactant phospholipids inhibit the uptake of respirable microspheres by the alveolar macrophage NR8383. J Pharm Pharmacol. 2002;54:1065–72.

    Article  CAS  PubMed  Google Scholar 

  32. Diab R, Brillault J, Bardy A, Gontijo AVL, Olivier JC. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophage targeting. Int J Pharm. 2012;436:833–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hirota K, Hasegawa T, Hinata H, Ito F, Inagawa H, Kochi C, et al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release. 2007;119:69–76.

    Article  CAS  PubMed  Google Scholar 

  34. Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Die Pharm Int J Pharm Sci. 2006;61:375–86.

    CAS  Google Scholar 

  35. Müller R, Radtke M, Wissing S. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242:121–8.

    Article  PubMed  Google Scholar 

  36. Li M, Zheng Y, Shan F-Y, Zhou J, Gong T, Zhang Z-R. Development of ionic-complex-based nanostructured lipid carriers to improve the pharmacokinetic profiles of breviscapine. Acta Pharmacol Sin. 2013;34:1108–15.

  37. Illumand L, Davis S. The targeting of drugs parenterally by use of microspheres. PDA J Pharm Sci Technol. 1982;36:242–8.

    Google Scholar 

  38. Rappand R, Bivins B. Final in-line filtration: removal of contaminants from IV fluids and drugs. Hosp Formul. 1983;18:1124–8.

    Google Scholar 

  39. Wilkinsand D, Myers P. Studies on the relationship between the electrophoretic properties of colloids and their blood clearance and organ distribution in the rat. Br J Exp Pathol. 1966;47:568.

    Google Scholar 

  40. Fidler I, Raz A, Fogler W, Kirsh R, Bugelski P, Poste G. Design of liposomes to improve delivery of macrophage-augmenting agents to alveolar macrophages. Cancer Res. 1980;40:4460–6.

    CAS  PubMed  Google Scholar 

  41. Vroman L, Adams A, Fischer G, Munoz P. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55:156–9.

    CAS  PubMed  Google Scholar 

  42. Göppertand T, Müller R. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm. 2005;302:172–86.

    Article  Google Scholar 

  43. Buyens K, Meyer M, Wagner E, Demeester J, De Smedt SC, Sanders NN. Monitoring the disassembly of siRNA polyplexes in serum is crucial for predicting their biological efficacy. J Control Release. 2010;141:38–41.

    Article  CAS  PubMed  Google Scholar 

  44. Buyens K, De Smedt SC, Braeckmans K, Demeester J, Peeters L, van Grunsven LA, et al. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release. 2012;158:362–70.

    Article  CAS  PubMed  Google Scholar 

  45. Tasduq S, Singh K, Satti N, Gupta D, Suri K, Johri R. Terminalia chebula (fruit) prevents liver toxicity caused by sub-chronic administration of rifampicin, isoniazid and pyrazinamide in combination. Hum Exp Toxicol. 2006;25:111–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was funded by the National S&T Major Project of China (Grant No. 2012ZX09304004001) and the National Basic Research Program of China (No. 2013CB932504). The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Gong or Zhirong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Lin, Q., Guo, L. et al. Rifampicin Loaded Mannosylated Cationic Nanostructured Lipid Carriers for Alveolar Macrophage-specific Delivery. Pharm Res 32, 1741–1751 (2015). https://doi.org/10.1007/s11095-014-1572-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1572-3

Key Words

Navigation