Skip to main content

Advertisement

Log in

Effect of Ultra-High Pressure Homogenization on the Interaction Between Bovine Casein Micelles and Ritonavir

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to develop a milk-based powder formulation appropriate for pediatric delivery of ritonavir (RIT).

Methods

Ultra-high pressure homogenization (UHPH) at 0.1, 300 and 500 MPa was used to process a dispersion of pasteurized skim milk (SM) and ritonavir. Loading efficiency was determined by RP-HPLC-UV; characterization of RIT:SM systems was carried out by apparent average hydrodynamic diameter and rheological measurements as well as different analytical techniques including Trp fluorescence, UV spectroscopy, DSC, FTIR and SEM; and delivery capacity of casein micelles was determined by in vitro experiments promoting ritonavir release.

Results

Ritonavir interacted efficiently with milk proteins, especially, casein micelles, regardless of the processing pressure; however, results suggest that, at 0.1 MPa, ritonavir interacts with caseins at the micellar surface, whilst, at 300 and 500 MPa, ritonavir is integrated to the protein matrix during UHPH treatment. Likewise, in vitro experiments showed that ritonavir release from micellar casein systems is pH dependent; with a high retention of ritonavir during simulated gastric digestion and a rapid delivery under conditions simulating the small intestine environment.

Conclusions

Skim milk powder, especially, casein micelles are potentially suitable and efficient carrier systems to develop novel milk-based and low-ethanol powder formulations of ritonavir appropriate for pediatric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organization (W.H.O). Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. 2013.

  2. Giaquinto C, Morelli E, Fregonese F, Rampon O, Penazzato M, de Rossi A, et al. Current and future antiretroviral treatment options in paediatric HIV infection. Clin Drug Investig. 2008;28(6):375–97.

    Article  CAS  PubMed  Google Scholar 

  3. Abbott Laboratories. Norvir (ritonavir capsules) soft gelatin/(ritonavir oral solution). North Chicago, IL. 2006. Available from: http://www.rxabbott.com/pdf/norpi2a.pdf

  4. Chen XQ, Kempf DJ, Li L, Sham HL, Vasavanonda S, Wideburg NE, et al. Synthesis and SAR studies of potent HIV protease inhibitors containing novel dimethylphenoxyl acetates as P-2 ligands. Bioorg Med Chem Lett. 2003;13(21):3657–60.

    Article  CAS  PubMed  Google Scholar 

  5. Sevrioukova IF, Poulos TL. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc Natl Acad Sci. 2010;107(43):18422–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lu Y, Chen S. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev. 2004;56(11):1621–33.

    Article  CAS  PubMed  Google Scholar 

  7. Chevalier-Lucia D, Blayo C, Gràcia-Julià A, Picart-Palmade L, Dumay E. Processing of phosphocasein dispersions by dynamic high pressure: effects on the dispersion physico-chemical characteristics and the binding of α-tocopherol acetate to casein micelles. Innov Food Sci Emerg Technol. 2011;12(4):416–25.

    Article  CAS  Google Scholar 

  8. Kommareddy S, Amiji M. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjugate Chem. 2005;16(6):1423–32.

    Article  CAS  Google Scholar 

  9. Braga ALM, Menossi M, Cunha RL. The effect of the glucono-delta-lactone/caseinate ratio on sodium caseinate gelation. Int Dairy J. 2006;16(5):389–98.

    Article  CAS  Google Scholar 

  10. De Kruif C, Holt C. Casein micelle structure, functions and interactions. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry—1 proteins. New York: Springer; 2003. p. 233–76.

    Chapter  Google Scholar 

  11. Yazdi SR, Corredig M. Heating of milk alters the binding of curcumin to casein micelles. a fluorescence spectroscopy study. Food Chem. 2012;132(3):1143–9.

    Article  Google Scholar 

  12. Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interf Sci. 2010;15(1):73–83.

    Article  CAS  Google Scholar 

  13. Semo E, Kesselman E, Danino D, Livney YD. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll. 2007;21(5):936–42.

    Article  CAS  Google Scholar 

  14. Kühn J, Zhu X-Q, Considine T, Singh H. Binding of 2-nonanone and milk proteins in aqueous model systems. J Agric Food Chem. 2007;55(9):3599–604.

    Article  PubMed  Google Scholar 

  15. Shapira A, Assaraf YG, Livney YD. Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomed Nanotech Biol Med. 2010;6(1):119–26.

    Article  CAS  Google Scholar 

  16. Sahu A, Kasoju N, Bora U. Fluorescence study of the curcumin − casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromol. 2008;9(10):2905–12.

    Article  CAS  Google Scholar 

  17. Zimet P, Rosenberg D, Livney YD. Re-assembled casein micelles and casein naoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll. 2011;25:1270–6.

    Article  CAS  Google Scholar 

  18. Haratigar S, Correding M. Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chem. 2014;143:27–32.

    Article  Google Scholar 

  19. Pan X, Yao P, Jiang M. Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene. J Colloid Interf Sci. 2007;315(2):456–63.

    Article  CAS  Google Scholar 

  20. Benzaria A, Maresca M, Taieb N, Dumay E. Interaction of curcumin with phosphocasein micelles processed or not by dynamic high-pressure. Food Chem. 2013;138:2327–37.

    Article  CAS  PubMed  Google Scholar 

  21. Roach A, Harte F. Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innov Food Sci Emerg Technol. 2008;9(1):1–8.

    Article  CAS  Google Scholar 

  22. Zhang M, Moore GA, Gardiner SJ, Begg EJ. Determination of celecoxib in human plasma and breast milk by high-performance liquid chromatographic assay. J Chromatogr B. 2006;830(2):245–8.

    Article  CAS  Google Scholar 

  23. Roach A, Dunlap J, Harte F. Association of triclosan to casein proteins through solvent–mediated high–pressure homogenization. J Food Sci. 2009;74(2):N23–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech. 2010;11(2):518–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Moreno FJ, Mellon FA, Wickham MS, Bottrill AR, Mills E. Stability of the major allergen Brazil nut 2S albumin (Ber e 1) to physiologically relevant in vitro gastrointestinal digestion. FEBS J. 2005;272(2):341–52.

    Article  CAS  PubMed  Google Scholar 

  26. Moreno FJ. Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed Pharmacother. 2007;61(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  27. Yazdi SR. Changing the structure of casein micelles to improve the delivery of bioactive compounds. PhD Thesis. 2012.

  28. Regnault S, Dumay E, Cheftel JC. Pressurisation of raw skim milk and of a dispersion of phosphocaseinate at 9°C or 20°C: effects on the distribution of minerals and proteins between colloidal and soluble phases. J Dairy Res. 2006;73(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Zhong Q. Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions. Food Hydrocoll. 2013;33:1–9.

    Article  Google Scholar 

  30. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur J Pharm Biopharm. 2013;84:487–96.

    Article  CAS  PubMed  Google Scholar 

  31. Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev. 2000;4(5):413–7.

    Article  CAS  Google Scholar 

  32. Jenita JJL, Madhusudhan NT, Wilson B, Manjula D, Savitha BK. Formulation and characterization of ritonavir loaded ethyl cellulose microspheres for oral delivery. World J Pharm Res. 2012;1(2):207–15.

    Google Scholar 

  33. Poddar SS, Nigade SU, Singh DK. Designing of ritonavir solid dispersion through spray drying. Der Pharm Lett. 2011;3(5):213–23.

    CAS  Google Scholar 

  34. Pelton JT, McLean LR. Spectroscopic methods for analysis of protein secondary structure. Anal Biochem. 2000;277(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  35. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Inhibition of solution crystal growth of ritonavir by cellulose polymers–factors influencing polymer effectiveness. CrystEngComm. 2012;14(20):6503–14.

    Article  CAS  Google Scholar 

  36. Fox PF. Milk proteins: general and historical aspects. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry—1 proteins. New York: Springer; 2003. p. 1–48.

    Chapter  Google Scholar 

  37. Liu J, Lee H, Allen C. Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Design. 2006;12(36):4685–701.

    Article  CAS  Google Scholar 

  38. Perales S, Barberá R, Lagarda MJ, Farré R. Availability of iron from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialysability) and uptake and transport by Caco-2 cells. Food Chem. 2007;102(4):1296–303.

    Article  CAS  Google Scholar 

  39. Huppertz T, Vaia B, Smiddy MA. Reformation of casein particles from alkaline-disrupted casein micelles. J Dairy Res. 2008;75(1):44–7.

    Article  CAS  PubMed  Google Scholar 

  40. Vaia B, Smiddy MA, Kelly AL, Huppertz T. Solvent-mediated disruption of bovine casein micelles at alkaline pH. J Agric Food Chem. 2006;54(21):8288–93.

    Article  CAS  PubMed  Google Scholar 

  41. Failla ML, Huo T, Thakkar SK. In vitro screening of relative bioaccessibility of carotenoids from foods. Asia Pac J Clin Nutr. 2008;17(S1):200–3.

    CAS  PubMed  Google Scholar 

  42. Tiwari RN, Bonde CG. LC, LC-MS/TOF and MSn studies for the separation, identification and characterization of degradation products of ritonavir. Anal Methods. 2011;3:1674–81.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award number R21HD065170. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge Abbott Laboratories for kindly donating the ritonavir used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Harte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corzo-Martínez, M., Mohan, M., Dunlap, J. et al. Effect of Ultra-High Pressure Homogenization on the Interaction Between Bovine Casein Micelles and Ritonavir. Pharm Res 32, 1055–1071 (2015). https://doi.org/10.1007/s11095-014-1518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1518-9

KEY WORDS

Navigation