Skip to main content
Log in

Pharmacokinetic and Pharmacodynamic Modeling of Romiplostim in Animals

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Romiplostim is a novel thrombopoiesis-stimulating peptibody that targets the thrombopoietin c-Mpl receptor, resulting in increased platelet production. The pharmacodynamic-mediated disposition (PDMDD) and its stimulatory effect on platelet production in Sprague-Dawley rats, rhesus monkeys, and cynomolgus monkeys following IV bolus and SC administration at various dose levels were determined.

Methods

The pharmacokinetic (PK) profile was described by a PDMDD model that accounts for romiplostim binding to the c-Mpl receptor. The PD model contained a series of aging compartments for precursor cells in bone marrow and platelets. The stimulatory function was described by an on-and-off function operating on the fractional receptor occupancy (RO). The threshold effect, ROthr, and KD parameters were determinants of drug potency, whereas Smax reflected drug efficacy.

Results

The model implicated that receptor-mediated clearance was negligible. ROthr estimated occupancies were 0.288, 0.385, 0.771 for rats, rhesus, and cynomolgus monkeys, respectively. The analogous estimated values of KD were 4.05, 2320, and 429 ng/mL, implying that romiplostim was much more potent in rats, which was confirmed by a dose-response (ratio of peak platelet count to baseline) relationship.

Conclusions

The model adequately described romiplostim serum concentrations and platelet counts in rats, rhesus monkeys, and cynomolgus monkeys, and quantified linear clearance, PDMDD, and potency of romiplostim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC0-∞ :

area under the curve from 0 to infinity

BaF3-Mpl cells:

Mpl-transfected cells

CFU:

colony-forming unit

CL:

clearance

CV:

coefficient of variation

DIV :

intravenous dosing

ELISA:

enzyme-linked immunosorbent assay

eTPO:

endogenous TPO

IgG1:

human immunoglobulin G subtype 1

ITS:

iterative-two-stage

rHu-TPO:

recombinant human thrombopoietin

TPO:

thrombopoietin

References

  1. Methia N, Louache F, Vainchenker W, Wendling F. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibit in vitro megakaryocytopoiesis. Blood. 1993;82:1395–401.

    PubMed  CAS  Google Scholar 

  2. Sheridan WP, Choi E, Toombs CF, Nichol J, Fanucchi M, Basser RI. Biology of thrombopoiesis and the role of Mpl ligand in the production and function of platelets. Platelets. 1997;8:319–32.

    Article  PubMed  CAS  Google Scholar 

  3. Broudyand VC, Lin NL. AMG531 stimulates megakaryopoiesis in vitro by binding to Mpl. Cytokine. 2004;25:52–60.

    Article  Google Scholar 

  4. Geddis AE, Linden HM, Kaushansky K. Thrombopoietin: a pan-hematopoietic cytokine. Cytokine Growth Factor Rev. 2002;13:61–73.

    Article  PubMed  CAS  Google Scholar 

  5. Basser RL, O’Flaherty E, Green M, Edmonds M, Nichol J, Menchaca DM, Cohen B, Begley CG. Development of pancytopenia with neutralizing antibodies to thrombopoietin after multicycle chemotherapy supported by megakaryocyte growth and development factor. Blood. 2002;99:2599–602.

    Article  PubMed  CAS  Google Scholar 

  6. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, Kuter DJ. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood. 2001;98:3241–8.

    Article  PubMed  CAS  Google Scholar 

  7. Wang B, Nichol JL, Sullivan JT. Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther. 2004;76:628–38.

    Article  PubMed  CAS  Google Scholar 

  8. Molineuxand G, Newland A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: from bench to bedside. Br J Haematol. 2010;150:9–20.

    Google Scholar 

  9. Bussel JB, Kuter DJ, George JN, McMillan R, Aledort LM, Conklin GT, Lichtin AE, Lyons RM, Nieva J, Wasser JS, Wiznitzer I, Kelly R, Chen CF, Nichol JL. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. N Engl J Med. 2006;355:1672–81.

    Article  PubMed  CAS  Google Scholar 

  10. Li J, Xia Y, Kuter DJ. Interaction of thrombopoietin with the platelet c-mpl receptor in plasma: binding, internalization, stability and pharmacokinetics. Br J Haematol. 1999;106:345–56.

    Article  PubMed  CAS  Google Scholar 

  11. Wang YM, Sloey B, Wong T, Khandelwal P, Melara R, Sun YN. Investigation of the Pharmacokinetics of romiplostim in rodents with a focus on the clearance mechanism. Pharm Res. 2011;28:1931–38.

    Google Scholar 

  12. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56:248–52.

    Article  PubMed  CAS  Google Scholar 

  13. Sugiyamaand Y, Hanano M. Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body. Pharm Res. 1989;6:192–202.

    Article  Google Scholar 

  14. Mager and DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28:507–32.

    Google Scholar 

  15. Woo S, Krzyzanski W, Jusko WJ. Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn. 2007;34:849–68.

    Article  PubMed  CAS  Google Scholar 

  16. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB. Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol. 2006;46:747–57.

    Article  PubMed  CAS  Google Scholar 

  17. Jinand F, Krzyzanski W. Pharmacokinetic model of target-mediated disposition of thrombopoietin. AAPS PharmSci. 2004;6:E9.

    Google Scholar 

  18. Samtani MN, Perez-Ruixo JJ, Brown KH, Cerneus D, Molloy CJ. Pharmacokinetic and pharmacodynamic modeling of pegylated thrombopoietin mimetic peptide (PEG-TPOm) after single intravenous dose administration in healthy subjects. J Clin Pharmacol. 2009;49:336–50.

    Article  PubMed  CAS  Google Scholar 

  19. Wang YM, Krzyzanski W, Doshi S, Xiao JJ, Perez-Ruixo JJ, Chow AT. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J. 2010;12:729–40.

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol. 2007;63:548–61.

    Article  PubMed  CAS  Google Scholar 

  21. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res. 2006;23:95–103.

    Article  PubMed  CAS  Google Scholar 

  22. Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, Chow AT, Pérez-Ruixo JJ. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet. 2011;50:793–807.

    Article  PubMed  CAS  Google Scholar 

  23. Mager DE, Neuteboom B, Efthymiopoulos C, Munafo A, Jusko WJ. Receptor-mediated pharmacokinetics and pharmacodynamics of interferon-beta1a in monkeys. J Pharmacol Exp Ther. 2003;306:262–70.

    Article  PubMed  CAS  Google Scholar 

  24. Segrave AM, Mager DE, Charman SA, Edwards GA, Porter CJ. Pharmacokinetics of recombinant human leukemia inhibitory factor in sheep. J Pharmacol Exp Ther. 2004;309:1085–92.

    Article  PubMed  CAS  Google Scholar 

  25. Magerand DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22:1589–96.

    Article  Google Scholar 

  26. Harker LA, Roskos LK, Marzec UM, Carter RA, Cherry JK, Sundell B, Cheung EN, Terry D, Sheridan W. Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood. 2000;95:2514–22.

    PubMed  CAS  Google Scholar 

  27. Perez-Ruixo JJ, Krzyzanski W, Hing J. Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects. Clin Pharmacokinet. 2008;47:399–415.

    Article  PubMed  CAS  Google Scholar 

  28. Krzyzanski W. Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models. J Pharmacokinet Pharmacodyn. 2011;38:179–204.

    Article  PubMed  Google Scholar 

  29. Bauer R. NONMEM Users Guide Introduction to NONMEM 7.2.0, ICON Development Solutions Ellicott City, MD, 2011.

  30. Yano Y, Beal S, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28:171–92.

    Article  PubMed  CAS  Google Scholar 

  31. Yang C, Li YC, Kuter DJ. The physiological response of thrombopoietin (c-Mpl ligand) to thrombocytopenia in the rat. Br J Haematol. 1999;105:478–85.

    Article  PubMed  CAS  Google Scholar 

  32. Krzyzanski W, Perez Ruixo JJ. Lifespan based indirect response models. J Pharmacokinet Pharmacodyn. 2012;39:109–23.

    Article  PubMed  Google Scholar 

  33. Schremer S. The blood morphology of laboratory animals. Philadelphia: F. A. Davis Company; 1967.

    Google Scholar 

  34. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93:2645–68.

    Article  PubMed  CAS  Google Scholar 

  35. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology. 1996;89:573–8.

    Article  PubMed  CAS  Google Scholar 

  36. Waldmannand TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110.

    Google Scholar 

  37. Ferl GZ, Wu AM, DiStefano 3rd JJ. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng. 2005;33:1640–52.

    Article  PubMed  Google Scholar 

  38. Gargand A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34:687–709.

    Article  Google Scholar 

  39. Xiao JJ, Krzyzanski W, Wang YM, Li H, Rose MJ, Ma M, Wu Y, Hinkle B, Perez-Ruixo JJ. Pharmacokinetics of anti-hepcidin monoclonal antibody Ab 12B9m and hepcidin in cynomolgus monkeys. AAPS J. 2010 12(4):646–57.

    Article  PubMed  CAS  Google Scholar 

  40. Hansen and RJ, Balthasar JP. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci. 2003;92:1206–15.

    Google Scholar 

  41. Kuterand DJ, Begley CG. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood. 2002;100:3457–69.

    Article  Google Scholar 

  42. Sato T, Fuse A, Niimi H, Fielder PJ, Avraham H. Binding and regulation of thrombopoietin to human megakaryocytes. Br J Haematol. 1998;100:704–11.

    Article  PubMed  CAS  Google Scholar 

  43. Abraham AK, Krzyzanski W, Mager DE. Partial derivative-based sensitivity analysis of models describing target-mediated drug disposition. AAPS J. 2007;9:E181–9.

    Article  PubMed  Google Scholar 

  44. Corash L, Shafer B, Perlow M. Heterogeneity of human whole blood platelet subpopulations. II. Use of a subhuman primate model to analyze the relationship between density and platelet age. Blood. 1978;52:726–34.

    PubMed  CAS  Google Scholar 

  45. Hjortand PF, Paputchis H. Platelet life span in normal, splenectomized and hypersplenic rats. Blood. 1960;15:45–51.

    Google Scholar 

  46. Stephenson RP. A modification of receptor theory. Br J Pharmacol Chemother. 1956;11:379–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an educational donation for the Fellowship in PK/PD Hematology from Amgen Inc. The authors wish to thank Teresa Wong for the bioanalytical support, Michelle Zakson for editing/writing assistance.

This study was funded by Amgen Inc. L Sutjandra, JJ Perez-Ruixo, B Sloey, AT Chow, and YM Wang were employees at Amgen, Inc. at the time this analysis was performed. W Krzyzanski was a consultant for Amgen, Inc, and received consultation fees for this project.

Part of the content of this manuscript was presented at a poster podium session: Y. Wang, W. Krzyzanski, J. Xiao, B. Jaramilla, A. Chow, Pharmacokinetic and Pharmacodynamic modeling of AMG 531, a thrombopoiesis stimulating Fc fusion protein (peptibody), in rats and monkeys. The AAPS Journal Vol. 9, No. S2, Abstract W4407 (2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jose Perez-Ruixo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzyzanski, W., Sutjandra, L., Perez-Ruixo, J.J. et al. Pharmacokinetic and Pharmacodynamic Modeling of Romiplostim in Animals. Pharm Res 30, 655–669 (2013). https://doi.org/10.1007/s11095-012-0894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0894-2

KEY WORDS

Navigation