Skip to main content

Advertisement

Log in

Laser-Engineered Dissolving Microneedle Arrays for Transdermal Macromolecular Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To assess the feasibility of transdermal macromolecule delivery using novel laser-engineered dissolving microneedles (MNs) prepared from aqueous blends of 20% w/w poly(methylvinylether maleic anhydride) (PMVE/MA) in vitro and in vivo.

Methods

Micromoulding was employed to prepare insulin-loaded MNs from aqueous blends of 20% w/w PMVE/MA using laser-engineered moulds. To investigate conformational changes in insulin loaded into MNs, circular dichroism spectra were obtained. In vitro drug release studies from MNs across neonatal porcine skin were performed using Franz diffusion cells. The in vivo effect of MNs was assessed by their percutaneous administration to diabetic rats and measurement of blood glucose levels.

Results

MNs loaded with insulin constituted exact counterparts of mould dimensions. Circular dichroism analysis showed that encapsulation of insulin within polymeric matrix did not lead to change in protein secondary structure. In vitro studies revealed significant enhancement in insulin transport across the neonatal porcine skin. Percutaneous administration of insulin-loaded MN arrays to rats resulted in a dose-dependent hypoglycaemic effect.

Conclusion

We demonstrated the efficacy of MNs prepared from aqueous blends of PMVE/MA in transdermal delivery of insulin. We are currently investigating the fate of the delivered insulin in skin and MN-mediated delivery of other macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BGL:

blood glucose level

BSA:

bovine serum albumin

CD:

circular dichroism

MN:

microneedle

PMVE/MA:

poly(methylvinylether) maleic anhydride

SC :

stratum corneum

REFERENCES

  1. Brown L. Commercial challenges of protein drug delivery. Expert Opin Drug Del. 2005;2(1):29–42.

    Article  Google Scholar 

  2. Kumar T, Soppimath K, Nachaegari S. Novel delivery technologies for protein and peptide therapeutics. Curr Pharm Biotechnol. 2006;7:261–76.

    Article  PubMed  CAS  Google Scholar 

  3. Banga AK. Therapeutic Peptides and Proteins: Formulation, Processing and Delivery Systems. Boca Raton: CRC Press; 2006.

    Google Scholar 

  4. Gupta H, Sharma A. Recent trends in protein and peptide drug delivery systems. Asian J Pharm. 2009;3(2):69–75.

    Article  Google Scholar 

  5. Benson H, Namjoshi S. Proteins and peptides: Strategies for delivery to and across the skin. J Pharm Sci. 2008;97(9):3591–610.

    Article  PubMed  CAS  Google Scholar 

  6. Chaturvedula A, Joshi D, Anderson C, Morris R, Sembrowich W, Banga A. In vivo iontophoretic delivery and pharmacokinetics of salmon calcitonin. Int J Pharm. 2005;97(1–2):190–6.

    Google Scholar 

  7. Medi B, Singh J. Electronically facilitated transdermal delivery of human parathyroid hormone (1–34). Int J Pharm. 2003;263:25–33.

    Article  PubMed  CAS  Google Scholar 

  8. Park E, Werner J, Smith N. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm Res. 2007;24(7):1396–401.

    Article  PubMed  CAS  Google Scholar 

  9. Badkar A, Smith A, Eppstein J, Banga A. Transdermal delivery of interferon alpha-2B using microporation and iontophoresis in hairless rats. Pharm Res. 2007;24:1389–95.

    Article  PubMed  CAS  Google Scholar 

  10. Fang JY, Lee WR, Shen SC, Wang HY, Fang CL, Hu CH. Transdermal delivery of macromolecules by erbium:YAG laser. J Control Release. 2004;100:75–85.

    Article  PubMed  CAS  Google Scholar 

  11. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.

    Article  PubMed  CAS  Google Scholar 

  12. Kaushik S, Allen H, Donald D, McAllister D, Smitra S, Allen M, et al. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92:502–4.

    Article  PubMed  CAS  Google Scholar 

  13. Martanto W, Davis SP, Holiday NR, Wang J, Gill H, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21(6):947–52.

    Article  PubMed  CAS  Google Scholar 

  14. Donnelly RF, Morrow DIJ, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, et al. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J Control Release. 2008;129:154–62.

    Article  PubMed  CAS  Google Scholar 

  15. Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  16. Davis S, Martanto W, Allen M, Prausnitz M. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005;52(5):909–15.

    Article  PubMed  Google Scholar 

  17. Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.

    Article  PubMed  CAS  Google Scholar 

  18. Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23(5):1008–19.

    Article  PubMed  CAS  Google Scholar 

  19. Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104:51–66.

    Article  PubMed  CAS  Google Scholar 

  20. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  PubMed  CAS  Google Scholar 

  21. Donnelly RF, Majithiya R, Singh R, Morrow D, Garland M, Demir YK, et al. Design, optimization and characterization of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57.

    Article  PubMed  CAS  Google Scholar 

  22. Henricus M, Johnon K, Banerje I. Investigation of insulin loaded self-assembled microtubulus for drug release. Bioconjug Chem. 2008;19:2394–400.

    Article  PubMed  CAS  Google Scholar 

  23. Bouchard M, Zurdo J, Nettleton E, Dobson C, Robinson C. Formation of insulin amyloid fibrils followed by FTIR and simultaneously with CD and electron microscopy. Protein Sci. 2000;9:1960–7.

    Article  PubMed  CAS  Google Scholar 

  24. Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med. 2003;20:886–98.

    Article  PubMed  CAS  Google Scholar 

  25. Karande P, Jain A, Mitragotri S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol. 2004;22(2):192–7.

    Article  PubMed  CAS  Google Scholar 

  26. Ito Y, Saeki A, Shiroyama K, Sugioka N, Takada K. Percutaneous absorption of interferon-alpha by self-dissolving micropiles. J Drug Target. 2008;16(3):243–9.

    Article  PubMed  CAS  Google Scholar 

  27. Langkjaer L, Brange J, Grodsky GM, Guy R. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment. J Control Release. 1998;51:47–56.

    Article  PubMed  CAS  Google Scholar 

  28. Tezel A, Sens A, Mitragotri S. Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. J Pharm Sci. 2003;92(2):381–93.

    Article  PubMed  CAS  Google Scholar 

  29. Ito Y, Ohashi Y, Saeki A, Sugioka N, Takada K. Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs Chem. Pharm Bull. 2008;56(3):243–6.

    Article  CAS  Google Scholar 

  30. Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin Pharmacokinet. 2003;42(5):461–74.

    Article  PubMed  CAS  Google Scholar 

  31. King M, Badea I, Solomon J, Kumar P, Gaspar K, Foldvari M. Transdermal delivery of insulin from novel biphasic lipid system in diabetic rats. Diab Technol The. 2002;4(4):479–88.

    Article  Google Scholar 

  32. Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, et al. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res. 2005;22(4):550–5.

    Article  PubMed  CAS  Google Scholar 

  33. Banga A. Theme section: Transdermal delivery of proteins. Pharm Res. 2007;24(7):1357–9.

    Article  PubMed  Google Scholar 

  34. Ito Y, Yamazaki T, Sugioka N, Takada K. Self-dissolving micropile array tips for percutaneous administration of insulin. J Mater Sci Mater M. 2010;21:835–41.

    Article  CAS  Google Scholar 

  35. Donnelly RF, Morrow DIJ, Thakur RRS, Migalska K, McCarron PA, O'Mahony C, et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm. 2009;35:1242–54.

    Article  PubMed  CAS  Google Scholar 

  36. Ito Y, Eiji H, Atsushi S, Nobuyuki S, Kanji T. Feasibility of microneedles for percutaneous absorption of insulin. Euro J Pharm Sci. 2006;29(1):82–8.

    Article  CAS  Google Scholar 

  37. Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater. 2008;20:933–8.

    Article  CAS  Google Scholar 

  38. Wangoo N, Suri C, Shekawat G. Interaction of gold nanoparticles with protein: A spectroscopic study to monitor protein conformational changes. App. Phys. Lett. 2008;92(13) ID 133104

  39. Brandes N, Welzel P, Werner C, Kroh L. Adsorption-induced conformational changes of proteins onto ceramic particles: Differential scanning calorimetry and FTIR analysis. J Colloid Interf Sci. 2006;299(1):56–69.

    Article  CAS  Google Scholar 

  40. Lougheed WD, Woulfe-Flanagan H, Clement JR, Albisser A. Insulin aggregation in artificial delivery systems. Diabetologia. 1980;19:1–9.

    Article  PubMed  CAS  Google Scholar 

  41. Pillai O, Borkute S, Sivaprasad N, Panchagnula R. Transdermal iontophoresis of insulin II. Physicochemical considerations. Int J Pharm. 2003;254:271–80.

    Article  PubMed  CAS  Google Scholar 

  42. Huang Y, Wu S. Stability of peptides during iontophoretic transdermal delivery. Int J Pharm. 1996;131:19–23.

    Article  CAS  Google Scholar 

  43. Srinivasan V, Higuchi W, Sims S, Ghanem A, Behl C. Transdermal iontophoretic drug delivery: Mechanistic analysis and application to polypeptide delivery. J Pharm Sci. 1989;78(5):370–5.

    Article  PubMed  CAS  Google Scholar 

  44. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, ICH harmonised tripartite guideline—Validation of Analytical Procedures: Text and Methodology—Q2(R1), 2005

  45. Kadima W, Ogendal L, Bauer R, Kaarsholm N, Brodersen K, Hansen JF, et al. The influence of ionic strength and pH on the aggregation properties of zinc-free insulin studied by static and dynamic laser light scattering. Biopolymers. 1993;33(11):1643–57.

    Article  PubMed  CAS  Google Scholar 

  46. Tokumoto S, Higo N, Sugibayashi K. Effect of electroporation and pH on iontophoretic transdermal delivery of human insulin. Int J Pharm. 2006;326:13–9.

    Article  PubMed  CAS  Google Scholar 

  47. Sadhale Y, Shah J. Biological activity of insulin in GMO gels and the effect of agitation Int. J Pharm. 1999;191:65–74.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by BBSRC grant number BB/E020534/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan F. Donnelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migalska, K., Morrow, D.I.J., Garland, M.J. et al. Laser-Engineered Dissolving Microneedle Arrays for Transdermal Macromolecular Drug Delivery. Pharm Res 28, 1919–1930 (2011). https://doi.org/10.1007/s11095-011-0419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0419-4

KEY WORDS

Navigation