Skip to main content

Advertisement

Log in

Two-Layered Dissolving Microneedles for Percutaneous Delivery of Peptide/Protein Drugs in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Feasibility study of two-layered dissolving microneedles for percutaneous delivery of peptide/proteins using recombinant human growth hormone (rhGH) and desmopressin (DDAVP).

Methods

Two-layered dissolving microneedles were administered percutaneously to the rat skin. Plasma rhGH and DDAVP concentrations were measured by EIA and LC/MS/MS. In vivo dissolution and diffusion rates of drugs in the skin were studied using tracer dyes, lissamine green B (LG) for rhGH and evans blue (EB) for DDAVP. Diffusion of drugs vertically into the skin was studied using FITC-dextran (MW = 20 kDa)-loaded dissolving microneedles. Stability experiments were performed at −80°C and 4°C.

Results

The absorption half-lives, t 1/2a, of rhGH and DDAVP from dissolving microneedles were 23.7 ± 4.3–28.9 ± 5.2 and 14.4 ± 2.9–14.1 ± 1.1 min; the extents of bioavailability were 72.8 ± 4.2–89.9 ± 10.0% and 90.0 ± 15.4–93.1 ± 10.3%, respectively. LG and EB disappeared from the administered site within 2 h and 3 h after administration. Five green fluorescein spots were detected at 15 s and enlarged transversally at 30 s. FITC-dextran was delivered into the microcapillaries at 5 min and 10 min. The rhGH and DDAVP were stable in dissolving microneedles for one month at −80°C and 4°C.

Conclusions

Results suggest that the two-layered dissolving microneedles are useful as an immediate-release transdermal DDS for peptide/protein drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Walsh G. Biopharmaceuticals. West Sussex: Wiley; 2003.

    Google Scholar 

  2. Shibata N, Ito Y, Takada K. Pharmacokinetics. In: Gad SC, editor. Handbook of pharmaceutical biotechnology. MA: Wiley-Interscience; 2007. p. 757–814.

    Chapter  Google Scholar 

  3. Morishita I, Morishita M, Takayama K, Machida Y, Nagai T. Hypoglycemic effect of novel oral microspheres of insulin with protease inhibitor in normal and diabetic rats. Int J Pharm. 1992;78:9–16.

    Article  CAS  Google Scholar 

  4. Yamamoto A, Taniguchi T, Rikyuu K, Tsuji T, Murakami M, Muranishi S. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res. 1994;11:1496–500.

    Article  CAS  PubMed  Google Scholar 

  5. Amino Y, Kawada K, Toi K, Kumashiro I, Fukushima K. Phenylalanine derivatives enhancing intestinal absorption of insulin in mice. Chem Pharm Bull. 1988;36:4426–34.

    CAS  PubMed  Google Scholar 

  6. Morishita M, Morishita I, Takayama K, Machida Y, Nagai T. Site dependent effect of aprotinin, sodium caprate Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol Pharm Bull. 1993;16:68–72.

    CAS  PubMed  Google Scholar 

  7. Utoguchi N, Watanabe Y, Shida T, Matsumoto M. Nitric oxide donors enhance rectal absorption of macromolecules in rabbits. Pharm Res. 1998;15:870–6.

    Article  CAS  PubMed  Google Scholar 

  8. Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y. Enteral absorption of insulin in rats from mucoadhesive chitosan coated liposomes. Pharm Res. 1996;13:896–901.

    Article  CAS  PubMed  Google Scholar 

  9. Tozaki H, Komoike J, Tada C, Maruyama T, Terabe A, Suzuki J. Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon. J Pharm Sci. 1997;86:1016–21.

    Article  CAS  PubMed  Google Scholar 

  10. Matsuzawa A, Morishita M, Takayama K, Nagai T. Absorption of insulin using water-in-oil-in-water emulsion from an enteral loop in rats. Biol Pharm Bull. 1995;18:1718–23.

    CAS  PubMed  Google Scholar 

  11. Cunha SA, Grossiord LJ, Puisieux F, Seiller M. Insulin in W/O/W multiple emulsions: biological activity after oral administration in normal and diabetic rats. J Microencapsul. 1997;14:321–33.

    Article  CAS  PubMed  Google Scholar 

  12. Morishita M, Matsuzawa A, Takayama K, Isowa K, Nagai T. Improving insulin enteral absorption using water-in-oil-in-water emulsion. Int J Pharm. 1998;172:189–98.

    Article  CAS  Google Scholar 

  13. Suzuki A, Morishita M, Kajita M, Takayama K, Isowa K, Chiba Y, et al. Enhanced colonic and rectal absorption of insulin using a multiple emulsion containing eicosapentaenoic acid and docosahexaenoic acid. J Pharm Sci. 1998;87:1196–202.

    Article  CAS  PubMed  Google Scholar 

  14. Takada K. Oral delivery of haematopoietic factors: Progress with gastrointestinal mucoadhesive patches, microdevices and other microfabrication technologies. Am J Drug Deliv. 2006;4:65–77.

    Article  CAS  Google Scholar 

  15. Khafagy El-S, Morishita M, Isowa K, Imai J, Takayama K. Effect of cell-penetrating peptides on the nasal absorption of insulin. J Control Release 2009;133:103–8.

    Article  CAS  Google Scholar 

  16. Kamei N, Morishita M, Takayama K. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Control Release 2009;136:179–86.

    Article  CAS  PubMed  Google Scholar 

  17. Barry B, Williams A. Penetration enhancers. Adv Drug Deliv Rev. 2004;56:603–18.

    Article  PubMed  Google Scholar 

  18. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev. 2004;56:675–711.

    Article  CAS  PubMed  Google Scholar 

  19. Preat V, Vanbever R. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56:659–74.

    Article  PubMed  Google Scholar 

  20. Doukas A. Transdermal delivery with a pressure wave. Adv Drug Deliv Rev. 2004;56:559–79.

    Article  CAS  PubMed  Google Scholar 

  21. Mitragotri S, Kost J. Low-frequency sonophoresis: a review. Adv Drug Deliv Rev. 2004;56:589–601.

    Article  CAS  PubMed  Google Scholar 

  22. Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release 2004;97:503–11.

    CAS  PubMed  Google Scholar 

  23. Prausnitz RM. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56:581–7.

    Article  CAS  PubMed  Google Scholar 

  24. Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, et al. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res. 2005;22:550–5.

    Article  CAS  PubMed  Google Scholar 

  25. Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: A novel approach combining microneedle and elastic liposomes. J Control Release 2008;129:144–50.

    Article  CAS  PubMed  Google Scholar 

  26. Wermeling DP, Banks SL, Hudson DA, Gill HS, Gupta J, Prausnitz MR, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci USA. 2008;105:2058–63.

    Article  CAS  PubMed  Google Scholar 

  27. Donnelly RF, Morrow DIJ, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, et al. Microneedle mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J Control Release 2008;129:154–62.

    Article  CAS  PubMed  Google Scholar 

  28. Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci. 2006;29:82–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ito Y, Murakami A, Maeda T, Sugioka N, Takada K. Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats. Int J Pharm. 2008;349:124–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ito Y, Ohashi Y, Shiroyama K, Sugioka N, Takada K. Self-dissolving micropiles for the percutaneous absorption of human growth hormone in rats. Biol Pharm Bull. 2008;31:1631–3.

    Article  CAS  PubMed  Google Scholar 

  31. Ito Y, Yoshimitsu J, Shiroyama K, Sugioka N, Takada K. Self-dissolving microneedles fir the percutaneous absorption of EPO in mice. J Drug Target 2006;14:255–62.

    Article  CAS  PubMed  Google Scholar 

  32. Ito Y, Saeki A, Shiroyama K, Sugioka N, Takada K. Percutaneous absorption of interferon-α by self-dissolving micropiles. J Drug Target 2008;16:243–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ito Y, Ohashi Y, Saeki A, Sugioka N, Takada K. Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs. Chem Pharm Bull. 2008;56:243–6.

    Article  CAS  PubMed  Google Scholar 

  34. Takada K. Microfabrication derived DDS: From batch to individual production. Drug Discov Ther. 2008;2:140–55.

    Google Scholar 

  35. Schmitz T, Huck CW, Bernkop-Schnurch A. Characterization of the thiol-disulphide chemistry of desmopressin by LC, μg-LC, LC-ESI-MS and Maldi-Tof. Amino Acids 2006;30:35–42.

    Article  CAS  PubMed  Google Scholar 

  36. Getie M, Neubert RH. LC-MS determination of desmopressin acetate in human skin samples. J Pharm Biomed Anal. 2004;35:921–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kluge M, Riedl S, Erhart-Hofmann B, Hartmann J, Waldhauser F. Improved extraction procedure and RIA for determination of arginine8-vasopressin in plasma: role of premeasurement sample treatment and reference values in children. Clin Chem. 1999;45:98–103.

    CAS  PubMed  Google Scholar 

  38. Agerso H, Seiding Larsen L, Riis A, Lovgren U, Karlsson MO, Senderovitz T. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br J Clin Pharmacol. 2004;58:352–8.

    Article  CAS  PubMed  Google Scholar 

  39. Gibaldi M, Perrier D. Pharmacokinetics. New York: Marcel Dekker; 2006.

    Google Scholar 

  40. Ito Y, Ise A, Sugioka N, Takada K. Molecular weight dependence on bioavailabity of FITC-dextran after administration of self-dissolving micropile to rat skin. Drug Dev Ind Pharm. in press (2010).

  41. Monteiro-Riviere AN, Bristol GD, Manning OT, Rogers AR, Riviere EJ. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J Invest Dermatol. 1990;95:582–6.

    Article  CAS  PubMed  Google Scholar 

  42. Bauer J, Bahmer AF, Worl J, Neuhuber W, Schuler G, Fartasch M. A strikingly constant ration exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical dissector method and the confocal laser scanning microscope. J Invest Dermatol. 2001;116:313–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wermeling PD, Banks LS, Hudson AD, Gill SH, Gupta J, Prausnitz RM, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to human. Proc Natl Acad Sci USA. 2008;105:2058–2063.

    Article  CAS  PubMed  Google Scholar 

  44. Caspers JP, Lucassen WG, Bruining AH, Puppels JG. Automated depth-scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin. J Raman Spectrosc. 2000;31:813–8.

    Article  CAS  Google Scholar 

  45. Ito Y, Hasegawa R, Fukushima K, Sugioka N, Takada K. Self-dissolving micropile array chip as percutaneous delivery system of protein drug. Biol Pharm Bull. in press (2010).

  46. Kolli CS, Banga AK. Charcterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2007;25:104–13.

    Article  PubMed  Google Scholar 

  47. Wermeling PD, Banks LS, Hudson AD, Gill SH, Gupta J, Prausnitz RM, et al. Micropiles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci USA. 2008;105:2058–63.

    Article  CAS  PubMed  Google Scholar 

  48. Duan H-G, Wei Y-H, Li B-X, Qin H-Y, Wu X-A. Improving the dissolution and oral bioavailability of the poorly water-soluble drug aloe-emodin by solid dispersion with polyethylene glycol 6000. Drug Dev Res. 2009;70:363–9.

    Article  CAS  Google Scholar 

  49. Park YJ, Kwon R, Quan ZQ, Oh HD, Kim OJ, Hwang RM, et al. Development of novel ibuprofen-loaded solid dispersion with improved bioavailability using aqueous solution. Arch Pharm Res. 2009;32:767–72.

    Article  CAS  PubMed  Google Scholar 

  50. Kennedy M, Hu J, Gao P, Li L, Ali-Reynolds A, Chal B, et al. Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: a case study. Mol Pharm. 2008;5:981–93.

    Article  CAS  PubMed  Google Scholar 

  51. Fukushima K, Haraya K, Terasaka S, Ito Y, Sugioka N, Takada K. Long-term pharmacokinetic efficacy and safety of low-dose ritonavir as a booster and atazanavir pharmaceutical formulation based on solid dispersion system in rats. Biol Pharm Bull. 2008;31:1209–14.

    Article  CAS  PubMed  Google Scholar 

  52. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007;12:1068–75.

    Article  CAS  PubMed  Google Scholar 

  53. Cheng YH, Dyer AM, Jabbal-Gill I, Hinchcliffe M, Nankervis R, Smith A, et al. Intranasal delivery of recombinant human growth hormone (somatropin) in sheep using chitosan-based powder formulations. Eur J Pharm Sci. 2005;26:9–15.

    Article  CAS  PubMed  Google Scholar 

  54. Moore JA, Pletcher SA, Ross MJ. Absorption enhancement of growth hormone from the gastrointestinal tract of rats. Int J Pharm. 1986;34:35–43.

    Article  CAS  Google Scholar 

  55. Li H, Song JW, Park JS, Han K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int J Pharm. 2003;258:11–9.

    Article  CAS  PubMed  Google Scholar 

  56. Lam XM, Duenas ET, Cleland JL. Encapsulation and stabilization of nerve growth factor into poly (lactic-co-glycolic) acid microspheres. J Pharm Sci. 2001;90:1356–65.

    Article  CAS  PubMed  Google Scholar 

  57. Kim HK, Park TG. Microencapsulation of dissociable human growth hormone aggregates within poly (D, L-lactic-co-glycolic) acid microparticles for sustained release. Int J Pharm. 2001;229:107–16.

    Article  CAS  PubMed  Google Scholar 

  58. Joukhadar C, Schenk B, Kaehler ST, Kollenz CJ, Bauer P, Muller M, et al. A replicate study design for testing bioequivalence: a case study on two desmopressin nasal spray preparations. Eur J Clin Pharmacol. 2003;59:631–6.

    Article  CAS  PubMed  Google Scholar 

  59. Steiner IM, Kaehler ST, Sauermann R, Rinosl H, Muller M, Joukhadar C. Plasma pharmacokinetics of desmopressin following sublingual administration: an exploratory dose-escalation study in healthy male volunteers. Int J Clin Pharm Ther. 2006;44:172–9.

    CAS  Google Scholar 

  60. Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang D, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release 2004;97:503–11.

    CAS  PubMed  Google Scholar 

  61. de Jager MW, Ponec M, Bouwstra JA. The lipid organization in stratum corneum and model systems based on ceramides. In: Touitou E, Barry BW, editors. Enhancement in drug delivery. London: CRC; 2007. p. 217–32.

    Google Scholar 

  62. Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, et al. Microfabricated silicon microneedles for nonviral cutancous gene delivery. Br J Dermatol. 2004;150:869–77.

    Article  CAS  PubMed  Google Scholar 

  63. Gardeniers HJGE, Luttge R, Berenschot EJW, de Boer MJ, Yeshurun SY, Hefetz M, van’t Oever R, van den Berg A. Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst. 2003;12:855–62.

    Article  Google Scholar 

  64. Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci. 2006;29:82–8.

    Article  CAS  PubMed  Google Scholar 

  65. Davis PS, Martanto W, Allen GM, Prausnitz RM. Hollow metal micropiles for insulin delivery to diabetic rats. IEEE Trams Biomed Eng. 2005;52:909–15.

    Article  Google Scholar 

  66. Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364:227–36.

    Article  CAS  PubMed  Google Scholar 

  67. Morawski M, Alpár A, Brückner G, Fiedler A, Jäger C, Gati G, et al. Chondroitin sulfate proteoglycan-based extracellular matrix in chicken (Gallus domesticus) brain. Brain Res. 2009;1275:10–23.

    Article  CAS  PubMed  Google Scholar 

  68. Faissner A, Clement A, Lochter A, Streit A, Mandl C, Schachner M. Isolation of a neural chondmitin sulfate proteoglycan with neurite outgrowth promoting properties. J Cell Biol. 1994;126:783–99.

    Article  CAS  PubMed  Google Scholar 

  69. Umehara Y, Yamada S, Nishimura S, Shioi J, Robakis NK, Sugahara K. Chondroitin sulfate of appican, the proteoglycan form of amyloid precursor protein, produced by C6 glioma cells interacts with heparin-binding neuroregulatory factors. FEBS Lett. 2004;557:233–8.

    Article  CAS  PubMed  Google Scholar 

  70. Wilson TM, Snow DM. Chondroitin sulfate proteoglycan expression pattern in hippocampal development: potential regulation of axon tract formation. J Comp Neurol. 2000;424:532–46.

    Article  CAS  PubMed  Google Scholar 

  71. Sintov A, Di-Capua N, Rubinstein A. Cross-linked chondroitin sulfate: characterization for drug delivery purposes. Biomaterials 1995;16:473–8.

    Article  CAS  PubMed  Google Scholar 

  72. Tsai FM, Chiang LY, Wang FL, Huang WG, Wu CP. Oral sustained delivery of diclofenac sodium using calcium chondroitin sulfate matrix. J Biomater Sci Polym Ed. 2005;16:1319–l331.

    Article  CAS  PubMed  Google Scholar 

  73. Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113–24.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by a strategic fund of MEXT (Ministry of Education, Culture, Sports, Science and Technology, MEXT) from 2008 to 2013 for establishing research foundation in private universities of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keizo Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, K., Ise, A., Morita, H. et al. Two-Layered Dissolving Microneedles for Percutaneous Delivery of Peptide/Protein Drugs in Rats. Pharm Res 28, 7–21 (2011). https://doi.org/10.1007/s11095-010-0097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0097-7

KEY WORDS

Navigation