Skip to main content

Advertisement

Log in

Silibinin Suppresses Spontaneous Tumorigenesis in APC min/+ Mouse Model by Modulating Beta-Catenin Pathway

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Here we assessed whether silibinin, a nontoxic chemopreventive agent, inhibits spontaneous intestinal tumorigenesis in APC min/+ mouse model, a genetically predisposed animal model of human familial adenomatous polyposis (FAP).

Materials and Methods

Six-week-old APC min/+ mice were divided into four groups and orally gavaged with 0.2 ml vehicle, or 250, 500 and 750 mg silibinin/kg body weight in 0.2 ml vehicle for five days/week. After 6 weeks, polyp burden was analyzed and tissues examined for molecular alterations.

Results

Silibinin treatments decreased total number of intestinal polyps by 34% (P < 0.01), 42% (P < 0.01) and 55% (P < 0.001), respectively. Immunohistochemical analysis showed that silibinin dose-dependently decreases (P < 0.001) proliferation and induces (P < 0.001) apoptosis only in intestinal polyps without any considerable effects on normal crypt-villi in APC min/+ or wild-type mice. Further analysis of polyps showed that silibinin decreases β-catenin, cyclin D1, c-Myc and phospho-glycogen synthase kinase-3β expression. Silibinin treatment also decreased phospho-Akt, cyclooxygenase-2, inducible nitric oxide synthase, nitrotyrosine and nitrite levels in polyps, the well-known mediators of intestinal/colon carcinogenesis.

Conclusion

Together, these results establish silibinin efficacy in a well-established genetic model of FAP, APC min/+ mouse, and suggest that this natural agent modulates various molecular pathways including β-catenin in its overall chemopreventive efficacy against intestinal carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

COX-2:

cyclooxygenase-2

CRC:

colorectal cancer

FAP:

familial adenomatous polyposis

GSK-3β:

glycogen synthase kinase-3β

IHC:

immunohistochemistry

iNOS:

inducible nitric oxide synthase

REFERENCES

  1. American Cancer Society. Cancer facts and figures 2007–2008. Atlanta, GA.

  2. Hisamuddin IM, Yang VW. Molecular genetics of colorectal cancer: an overview. Curr Colorectal Cancer Rep. 2006;2:53–9.

    Article  PubMed  Google Scholar 

  3. Bonovas S, Tsantes A, Drosos T, Sitaras NM. Cancer chemoprevention: a summary of the current evidence. Anticancer Res. 2008;28:1857–66.

    CAS  PubMed  Google Scholar 

  4. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990;247:322–4.

    Article  CAS  Google Scholar 

  5. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science. 1992;256:668–70.

    Article  CAS  PubMed  Google Scholar 

  6. Preston SL, Leedham SJ, Oukrif D, Deheregoda M, Goodlad RA, Poulsom R, et al. The development of duodenal microadenomas in FAP patients: the human correlate of the Min mouse. J Pathol. 2008;214:294–301.

    Article  CAS  PubMed  Google Scholar 

  7. Corpet DE, Pierre F. Point: from animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol Biomarkers Prev. 2003;12:391–400.

    PubMed  Google Scholar 

  8. Kroll DJ, Shaw HS, Oberlies NH. Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies. Integr Cancer Ther. 2007;6:110–9.

    Article  CAS  PubMed  Google Scholar 

  9. Singh RP, Agarwal R. Mechanisms and preclinical efficacy of silibinin in preventing skin cancer. Eur J Cancer. 2005;41:1969–79.

    Article  CAS  PubMed  Google Scholar 

  10. Singh RP, Agarwal R. Prostate cancer chemoprevention by silibinin: bench to bedside. Mol Carcinog. 2006;45:436–42.

    Article  CAS  PubMed  Google Scholar 

  11. Chittezhath M, Deep G, Singh RP, Agarwal C, Agarwal R. Silibinin inhibits cytokine-induced signaling cascades and down-regulates inducible nitric oxide synthase in human lung carcinoma A549 cells. Mol Cancer Ther. 2008;7:1817–26.

    Article  CAS  PubMed  Google Scholar 

  12. Tyagi A, Singh RP, Ramasamy K, Raina K, Redente EF, Dwyer-Nield LD, et al. Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res (Phila Pa). 2009;2:74–83.

    Google Scholar 

  13. Singh RP, Raina K, Sharma G, Agarwal R. Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin Cancer Res. 2008;4:7773–80.

    Article  Google Scholar 

  14. Raina K, Rajamanickam S, Singh RP, Deep G, Chittezhath M, Agarwal R. Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2008;68:6822–30.

    Article  CAS  PubMed  Google Scholar 

  15. Tyagi A, Agarwal C, Harrison G, Glode LM, Agarwal R. Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI-CDK-cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis. 2004;25:1711–20.

    Article  CAS  PubMed  Google Scholar 

  16. Singh RP, Tyagi A, Sharma G, Mohan S, Agarwal R. Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving down-regulation of survivin. Clin Cancer Res. 2008;14:300–8.

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal C, Singh RP, Dhanalakshmi S, Tyagi AK, Tecklenburg M, Sclafani RA, et al. Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene. 2003;22:8271–82.

    Article  CAS  PubMed  Google Scholar 

  18. Singh RP, Gu M, Agarwal R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res. 2008;68:2043–50.

    Article  CAS  PubMed  Google Scholar 

  19. Velmurugan B, Singh RP, Tyagi A, Agarwal R. Inhibition of azoxymethane-induced colonic aberrant crypt foci formation by silibinin in male Fisher 344 rats. Cancer Prev Res. 2008;1:376–84.

    Article  Google Scholar 

  20. Kohno H, Tanaka T, Kawabata K, Hirose Y, Sugie S, Tsuda H, et al. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int J Cancer. 2002;101:461–8.

    Article  CAS  PubMed  Google Scholar 

  21. Verschoyle RD, Greaves P, Patel K, Marsden DA, Brown K, Steward WP, et al. Evaluation of the cancer chemopreventive efficacy of silibinin in genetic mouse models of prostate and intestinal carcinogenesis: relationship with silibinin levels. Eur J Cancer. 2008;44:898–906.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao J, Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis. 1999;20:2101–8.

    Article  CAS  PubMed  Google Scholar 

  23. Giacomelli S, Gallo D, Apollonio P, Ferlini C, Distefano M, Morazzoni P, et al. Silybin and its bioavailable phospholipid complex (IdB 1016) potentiate in vitro and in vivo the activity of cisplatin. Life Sci. 2002;70:1447–59.

    Article  CAS  PubMed  Google Scholar 

  24. Chen T, Nines RG, Peschke SM, Kresty LA, Stoner GD. Chemopreventive effects of a selective nitric oxide synthase inhibitor on carcinogen-induced rat esophageal tumorigenesis. Cancer Res. 2004;64:3714–7.

    Article  CAS  PubMed  Google Scholar 

  25. Maga G, Hübscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci. 2003;116:3051–60.

    Article  CAS  PubMed  Google Scholar 

  26. Saglam O, Garrett CR, Boulware D, Sayegh Z, Shibata D, Malafa M, et al. Activation of the serine/threonine protein kinase AKT during the progression of colorectal neoplasia. Clin Colorectal Cancer. 2007;6:652–6.

    Article  PubMed  Google Scholar 

  27. Gavert N, Ben-Ze'ev A. Beta-Catenin signaling in biological control and cancer. J Cell Biochem. 2007;102:820–8.

    Article  CAS  PubMed  Google Scholar 

  28. Morin PJ. Beta-catenin signaling and cancer. Bioessays. 1999;21:1021–30.

    Article  CAS  PubMed  Google Scholar 

  29. Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH. Perspectives on c-Myc, Cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog. 2007;13:93–158.

    PubMed  Google Scholar 

  30. Luo J. Glycogen synthase kinase 3β (GSK3 β) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009;273:194–200.

    Article  CAS  PubMed  Google Scholar 

  31. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Cyclin D1: normal and abnormal functions. Endocrinology. 2004;145:5439–47.

    Article  CAS  PubMed  Google Scholar 

  32. Garte SJ. The c-myc oncogene in tumor progression. Crit Rev Oncog. 1993;4:435–49.

    CAS  PubMed  Google Scholar 

  33. Watanabe K, Kawamori T, Nakatsugi S, Wakabayashi K. COX-2 and iNOS, good targets for chemoprevention of colon cancer. Biofactors. 2000;12:129–33.

    Article  CAS  PubMed  Google Scholar 

  34. Kojima M, Morisaki T, Tsukahara Y, Uchiyama A, Matsunari Y, Mibu R, et al. Nitric oxide synthase expression and nitric oxide production in human colon carcinoma tissue. J Surg Oncol. 1999;70:222–9.

    Article  CAS  PubMed  Google Scholar 

  35. Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res. 1999;31:651–69.

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  37. Seong J, Chung EJ, Kim H, Kim GE, Kim NK, Sohn SK, et al. Assessment of biomarkers in paired primary and recurrent colorectal adenocarcinomas. Int J Radiat Oncol Biol Phys. 1999;45:1167–73.

    Article  CAS  PubMed  Google Scholar 

  38. Michaux L, Wlodarska I, Theate I, Stul M, Scheiff JM, Deneys V, et al. Coexistence of BCL1/CCND1 and CMYC aberrations in blastoid mantle cell lymphoma: a rare finding associated with very poor outcome. Ann Hematol. 2004;83:578–83.

    Article  CAS  PubMed  Google Scholar 

  39. Shiina H, Igawa M, Shigeno K, Terashima M, Deguchi M, Yamanaka M, et al. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. J Urol. 2002;168:2220–6.

    Article  CAS  PubMed  Google Scholar 

  40. Oyama T, Yamada Y, Hata K, Tomita H, Hirata A, Sheng H, et al. Further upregulation of beta-catenin/Tcf transcription is involved in the development of macroscopic tumors in the colon of ApcMin/+ mice. Carcinogenesis. 2008;29:666–72.

    Article  CAS  PubMed  Google Scholar 

  41. Kawai N, Tsujii M, Tsuji S. Cyclooxygenases and colon cancer. Prostaglandins Other Lipid Mediat. 2002;68–69:187–96.

    Article  PubMed  Google Scholar 

  42. Thomsen LL, Miles DW. Role of nitric oxide in tumor progression: lessons from human tumours. Cancer Metastasis Rev. 1998;17:107–18.

    Article  CAS  PubMed  Google Scholar 

  43. Ahn B, Ohshima H. Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res. 2001;61:8357–60.

    CAS  PubMed  Google Scholar 

  44. Washo-Stultz D, Hoglen N, Bernstein H, Bernstein C, Payne CM. Role of nitric oxide and peroxynitrite in bile salt-induced apoptosis: relevance to colon carcinogenesis. Nutr Cancer. 1999;35:180–8.

    Article  CAS  PubMed  Google Scholar 

  45. Swamy MV, Patlolla JM, Steele VE, Kopelovich L, Reddy BS, Rao CV. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APC Min mice. Cancer Res. 2006;66:7370–7.

    Article  CAS  PubMed  Google Scholar 

  46. Issa AY, Volate SR, Muga SJ, Nitcheva D, Smith T, Wargovich MJ. Green tea selectively targets initial stages of intestinal carcinogenesis in the AOM-ApcMin mouse model. Carcinogenesis. 2007;28:1978–84.

    Article  CAS  PubMed  Google Scholar 

  47. Covey TM, Edes K, Fitzpatrick FA. Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene. 2007;26:5784–92.

    Article  CAS  PubMed  Google Scholar 

  48. Little D, Jones SL, Blikslager AT. Cyclooxygenase (COX) inhibitors and the intestine. J Vet Intern Med. 2007;21:367–77.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by NCI RO1 grant CA112304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajamanickam, S., Kaur, M., Velmurugan, B. et al. Silibinin Suppresses Spontaneous Tumorigenesis in APC min/+ Mouse Model by Modulating Beta-Catenin Pathway. Pharm Res 26, 2558–2567 (2009). https://doi.org/10.1007/s11095-009-9968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9968-1

KEY WORDS

Navigation