Skip to main content

Advertisement

Log in

Buprederm™, a New Transdermal Delivery System of Buprenorphine: Pharmacokinetic, Efficacy and Skin Irritancy Studies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The pharmacokinetics, analgesic efficacy, and irritancy potential of Buprederm™, a new transdermal delivery system of buprenorphine, was evaluated.

Methods

Single and multiple dose pharmacokinetic studies were conducted in mice and rabbits. The analgesic efficacy and skin irritation potential were determined by tail flick and writhing tests in mice and by the Draize dermal scoring system in rabbits.

Results

Fast absorption of buprenorphine into the bloodstream was observed in mice and rabbits after Buprederm™ application. The peak buprenorphine level in plasma was achieved between 1 and 24 h, and the effective therapeutic drug concentration was maintained for 72 h. No significant accumulation of buprenorphine was seen after multiple consecutive applications of patches to rabbits with a 4-day dosing interval. Buprederm™ induced prolongation of tail-flick latency in a dose- and time-dependent manner. Maximum analgesic effect was attained between 3 and 6 h and was maintained for 24 h after patch application. No skin irritation was demonstrated in rabbits after repeated Buprederm™ application.

Conclusions

Buprederm™ was shown to be efficacious by achieving the effective buprenorphine concentration in the blood and brain sufficient to maintain an analgesic effect for 72 h, and was also shown to be safe following multiple applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

BTDS:

Buprenorphine transdermal system

HPLC:

High performance liquid chromatography

IS:

Internal standard

LC/MS/MS:

Liquid chromatography-tandem mass spectrometry

LOQ:

Limit of quantification

ME:

Maximum effect

MeOH:

Methanol

MRM:

Multiple reaction monitoring

P-gp :

P-glycoprotein

PK/PD:

Pharmacokinetic/pharmacodynamic

S.D.:

Standard deviation

S.E.M.:

Standard error of means

TDS:

Transdermal delivery system

References

  1. H. Blumberg, U. Hoffmann, M. Mohadjer, and R. Scheremet. Sympathetic nervous system and pain: a clinical reappraisal. Behav. Brain Sci. 20(3):426–434 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. D. A. Drossman, F. H. Creed, G. A. Fava, K. W. Olden, D. L. Patrick, and B. B. Toner. Psychosocial aspects of the functional gastrointestinal disorders. Gastroenterol. Int. 8:47–90 (1995).

    Google Scholar 

  3. J. Jailwala, T.F. Imperiale, and K. Kroenke. Pharmacologic treatment of the irritable bowel syndrome: a systematic review of randomized, controlled trials. Ann. Intern. Med. 133:135–147 (2000).

    Google Scholar 

  4. K. S. Lewis, K. J. Wipple, K. A. Michael, and E. J. Quebbeman. Effect of analgesic treatment on the physiological consequences of acute pain. Am. J. Hosp. Pharm. 51(12):1539–1554 (1994).

    PubMed  CAS  Google Scholar 

  5. G. P. Joshi, and P. F. White. Management of acute and postoperative pain. Curr. Opin. Anaesthesiol. 14(4):417–421 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. S. Suresh. Chronic and cancer pain management. Curr. Opin. Anaesthesiol. 17(3):253–259 (2004).

    Article  PubMed  Google Scholar 

  7. I. Gralow. Cancer pain: an update of pharmacological approaches in pain therapy. Curr. Opin. Anaesthesiol. 15(5):555–561 (2002).

    Article  PubMed  Google Scholar 

  8. S. Perrot. Management strategies for the treatment of non malignant chronic pain in the elderly. Psychol. Neuropsychiatr. Vieil. 4(3):163–170 (2006).

    PubMed  Google Scholar 

  9. L. Brasseur. Review of current pharmacologic treatment of pain. Drugs 53(Suppl 2):10–17 (1997)(Review).

    PubMed  CAS  Google Scholar 

  10. M. Krsiak. How to advance in treating pain with opioids: less myths—less pain. Cesk Fysiol. 53(1):34–38 (2004)(Review).

    PubMed  CAS  Google Scholar 

  11. T. L. Schaer. Practice guidelines for transdermal opioids in malignant pain. Drugs 64(23):2629–2638 (2004)(Review).

    Article  Google Scholar 

  12. P. R. Picard, M. R. Tramer, H. J. McQuay, and R. A. Moore. Analgesic efficacy of peripheral opioids (all except intra-articular): a qualitative systematic review of randomised controlled trials. Pain 72(3):309–18 (1997)(Review).

    Article  PubMed  CAS  Google Scholar 

  13. S. Grond, and T. Meuser. Weak opioids—an educational substitute for morphine? Curr. Opin. Anaesthesiol. 11(5):559–565 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. E. C. Strain, M. L. Stitzer, I. A. Liebson, and G. E. Bigelow. Buprenorphine versus methadone in the treatment of opioid dependence: self-reports, urinalysis, and addiction severity index. J. Clin. Psychopharmacol. 16(1):58–67 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. E. C. Strain, M. L. Stitzer, I. A. Liebson, and G. E. Bigelow. Comparison of buprenorphine and methadone in the treatment of opioid dependence. Am. J. Pharm. Sci. 83:126–130 (1994).

    Article  Google Scholar 

  16. D. R. Jasinski, J. S. Pevnick, and J. D. Griffith. Human pharmacology and abuse potential of the analgesic buprenorphine. Arch. Gen. Psychiatry. 35:501–516 (1978).

    PubMed  CAS  Google Scholar 

  17. E. Gorman. Fentanyl abuse and dependence: further evidence for second hand exposure hypothesis. J. Addict. Dis. 25(1):15–21 (2006).

    Article  Google Scholar 

  18. C. Rossano, L.F. De Luca, V. Firetto, and F. Fossi. Activity and tolerability of buprenorphine after parenteral and sublingual administration. Clin. Ther. 5(1):61–68 (1982).

    PubMed  CAS  Google Scholar 

  19. D. Dini, T. Fassio, A. Gottlieb, and M. Gini. Controlled study of the analgesic effect and tolerability of buprenorphine in cancer patients. Minerva Med. 77(3–4):93–104 (1986).

    PubMed  CAS  Google Scholar 

  20. A. Cowan, J. W. Lewis, and I. R. Macfarlane. Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. Br. J. Pharmacol. 60:537–545 (1977).

    PubMed  CAS  Google Scholar 

  21. A. Cowan, J. C. Doxey, and E. J. R. Harry. The animal pharmacology of buprenorphine, an oripavine analgesic agent. Br. J. Pharmacol. 60:547–554 (1977).

    PubMed  CAS  Google Scholar 

  22. A. Cowan. Update on the general pharmacology of buprenorphine. In A. Cowan, and J. W. Lewis (eds.), Buprnorphine: Combatting Drug Abuse with a Unique Opioid. Wiley-Liss, New York, 1995, pp. 31–47.

    Google Scholar 

  23. K. A. Sporer. Buprenorphine: a primer for emergency physicians. Ann. Emerg. Med. 43(5):580–584 (2004)(Review).

    Article  PubMed  Google Scholar 

  24. A. Cowan. Buprenorphine: new pharmacological aspects. Int. J. Clin. Pract. Suppl. 133:3–8 (2003).

    PubMed  CAS  Google Scholar 

  25. I. R. Wilding, S. S. Davis, G. H. Rimoy, P. Rubin, T. Kurihar-Bergstrom, V. Tipnis, B. Berner, and J. Nightingale. Pharmacokinetic evaluation of transdermal buprenorphine in man. Int. J. Pharm. 132:81–87 (1996).

    Article  CAS  Google Scholar 

  26. H. C. Evans, and S. E. Easthope. Transdermal buprenorphine. Drugs 63(19):1999–2010 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. R. Sittl. Transdermal buprenorphine in the treatment of chronic pain. Expert Rev. Neurother. 5(3):315–323 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. J. Sorge, and R. Sittl. Transdermal buprenorphine in the treatment of chronic pain: results of a phase III, multicenter, randomized, double-blind, placebo-controlled study. Clin. Ther. 26(11):1808–1820 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. K. Budd. Buprenorphine and the transdermal system: the ideal match in pain management. Int. J. Clin. Pract. Suppl. 133:9–14 (2003).

    PubMed  CAS  Google Scholar 

  30. L. Radbruch. Buprenorphine TDS: the clinical development-rationale and results. Int. J. Clin. Pract. Suppl. 133:15–18 (2003).

    PubMed  CAS  Google Scholar 

  31. R. E. Johnson, P. J. Fudala, and R. Payne. Buprenorphine: considerations for pain management. J. Pain Symptom Manage 29(3):297–326 (2005)(Review).

    Article  PubMed  CAS  Google Scholar 

  32. H. C. Evans, and S. E. Easthope. Transdermal buprenorphine. Drugs 63(19):1999–2010 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. KFDA. Test Guidelines for Safety Evaluation of Drugs. KFDA Notification. No. 1999-61 (1999).

  34. J. V. Roughan, and P. A. Flecknell. Buprenorphine: a reappraisal of its antinociceptive effects and therapeutic use in alleviating post-operative pain in animals. Lab. Animals 36(3):322–343 (2002).

    Article  CAS  Google Scholar 

  35. C. G. Pick, Y. Peter, S. Schreiber, and R. Weizman. Pharmacological characterization of buprenorphine, a mixed agonist-antagonist with κ3 analgesia. Brain Res. 744:41–46 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. W. A. Ritschel, and G. L. Kearns. Volume of distribution and distribution coefficient. In: Handbook of Basic Pharmacokinetics: Concepts and Applications, American Pharmaceutical Association, Washington DC, pp 178–188.

  37. P. A. Flecknell, and J. H. Liles. Assessment of the analgesic action of opioid agonist–antagonists in the rabbit. J. Ass. Vet. Anaesth. 17:24–29 (1990).

    Article  CAS  Google Scholar 

  38. A. Polettini, and M. A. Huestis. Simultaneous determination of buprenorphine, norbuprenorphine and buprenorphine-glucuronide in plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 754:447–459 (2001).

    Article  CAS  Google Scholar 

  39. S. Gopal, T. B. Tzeng, and A. Cowan. Development and validation of a sensitive analytical method for the simultaneous determination of buprenorphine and norbuprenorphine in human plasma. Eur. J. Pharmacol. 51:147–151 (2001).

    CAS  Google Scholar 

  40. M. Ohtani, H. Kotaki, K. Nishitateno, Y. Sawada, and T. Iga. Pharmacokinetic analysis of enterohepatic circulation of buprenorphine and its active metabolite, norbuprenorphine, in rats. Drug Metab. Dispos. 22:2–7 (1985).

    Google Scholar 

  41. A. Ceccato, R. Klinkenberg, P. Hubert, and B. Streel. Sensitive determination of buprenorphine and its N-dealkylated metabolite norbuprenorphine in human plasma by liquid chromatography coupled to tandem mass spectrometry. J. Pharm. Biomed. Anal. 32:619–631 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. D. E. Moody, M. H. Slawson, E. C. Strain, J. D. Laycock, A. C. Spanbauer, and R. L. Foltz. A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine and a coformulant, Naloxone, that is suitable for in vivo and in vitro metabolism. Anal. Biochem. 306:31–39 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. G. P. Hernandez-Delgadillo, and S. L. Cruz. Endogenous opioids are involved in morphine and dipyrone analgesic potentiation in the tail flick test in rats. Eur. J. Pharmacol. 546(1–3):54–59 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. H. O. J. Collier, L. C. Dinneen, A. Chistine, A. Johnson, and C. Schneider. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br. J. Pharmacol. Chemother. 32:295–310 (1968).

    PubMed  CAS  Google Scholar 

  45. J. H. Draize, G. Woodand, and H. O. Calvery. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 82:377–390 (1994).

    Google Scholar 

  46. R. Sittl. Buprenorphine transdermal patch: clinical expert report. Germany: Grunenthat GmbH 2000/Hannah C. Evans & Stephanie E. Easthope 2003, Transdermal Buprenorphine. Drug 63(19):1999–2010 (2003).

    Article  Google Scholar 

  47. R. L. Bronaugh, and R. F. Stewart. Methods for in vitro percutaneous absorption studies V: Permeation through damaged skin. J. Pharm. Sci. 74(10):1062–1066 (1985).

    Article  PubMed  CAS  Google Scholar 

  48. R. L. Bronaugh, and R. F. Stewart. Methods for in vitro percutaneous absorption studies IV: the flow-through diffusion cell. J. Pharm. Sci. 74:64–67 (1985).

    Article  PubMed  CAS  Google Scholar 

  49. A. M. Kligman. A biological brief on percutaneous absorption. Drug Dev. Ind. Pharm. 9(4):521–560 (1983).

    Article  CAS  Google Scholar 

  50. P. Sartorelli, H. R. Andersen, J. Angerer, J. Corish, H. Drexler, T. Göen, P. Griffin, S. A. M. Hotchkiss, F. Larese, L. Montomoli, J. Perkins, M. Schmelz, J. van de Sandt, and F. Williams. Percutaneous penetration studies for risk assessment. Environ. Toxicol. Pharmacol. 8(2):133–152 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. ECETOC (1993) In: Percutaneous Absorption, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Monograph Nr. 20, 1–80.

  52. W. R Good, M. S. Powers, P. Campbell, and L. Schenkel. A new transdermal delivery system for estradiol. J. Control. Release 2:89–97 (1985).

    Article  Google Scholar 

  53. N. L. Benowitz, K. Chan, C. P. Denaro, and P. Jacob III. Stable isotope method for studying transdermal drug absorption: the nicotine patch. Clin. Pharmacol. Ther. 50:286–293 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. M. Ohtani, H. Kotaki, Y. Sawada, and T. Iga. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J. Pharmacol. Exp. Ther. 272:505–510 (1995).

    PubMed  CAS  Google Scholar 

  55. A. Yassen, E. Olofsen, A. Dahan, and M. Danhof. Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentabyl in rats: role of receptor equilibration kinetics. J. Pharmacol. Exp. Ther. 313:1136–1149 (2005).

    Article  PubMed  CAS  Google Scholar 

  56. R. Kawai, R.E. Carson, B. Dunn, A. H. Newman, K. C. Rice, and R. G. Blasberg. Regional brain measurement of Bmax and KD with the opiate antagonist cyclofoxy: equilibrium studies in the conscious rat. J. Cereb. Blood Flow Metab. 11(4):529–544 (1991).

    PubMed  CAS  Google Scholar 

  57. H. Kusuhara, and Y. Sugiyama. Efflux transport systems for drugs at the blood–brain barrier and blood–cerebrospinal fluid barrier (Part 1). Drug Discov. Today 6:150–156 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. T. K. Henthorn, Y. Liu, M. Mahapatro, and K. Y. Ng. Active transport of fentanyl by the blood–brain barrier. J. Pharmacol. Exp. Ther. 289:1084–1089 (1999).

    PubMed  CAS  Google Scholar 

  59. S. J. Thompson, K. Koszdin, and C. M. Bernards. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 92:1392–1399 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. M. Rodriguez, I. Ortega, I. Soengas, E. Suarez, J. C. Lukas, and R. Calvo. Effect of P-glycoprotein inhibition on methadone analgesia and brain distribution in the rat. J. Pharm. Pharmacol. 56:367–374 (2004).

    Article  PubMed  CAS  Google Scholar 

  61. T. Suzuki, C. Zaima, Y. Moriki, T. Fukami, and K. Tomono. P-glycoprotein mediates brain-to-blood efflux transport of buprenorphine across the blood–brain barrier. J. Drug Target. 15(1):67–74 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. J. W. Wiechers. The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm. Weekbl. 11:185–198 (1989).

    CAS  Google Scholar 

  63. R. C. Wester, and P. K. Noonan. Relevance of animal models for percutaneous absorption. Int. J. Pharm. 7:99–110 (1980).

    Article  Google Scholar 

  64. R. Panchagnula, K. Stemmer, and W. A. Ritschel. Animal models for transdermal drug delivery. Methods Find. Exp. Clin. Pharmacol. 19(5):335–341 (1997).

    PubMed  CAS  Google Scholar 

  65. S. L. Borgland. Acute opioid receptor desensitization and tolerance: is there a link? Clin. Exp. Pharmacol. Physiol. 28:147–154 (2001).

    Article  PubMed  CAS  Google Scholar 

  66. D. Debruyne, T. Quentin, G. Poisnel, V. Lelong-Boulouard, L. Barre, and A. Coquerel. Acute and chronic administration of clorazepate modifies the cell surface regulation of μ-opioid receptors induced by buprenorphine in specific regions of the rat brain. Brain Res. 1052:222–231 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. A. Cowan. Buprenorphine: new pharmacological aspects. Int. J. Clin. Pract. Suppl 133:3–8 (2003).

    PubMed  CAS  Google Scholar 

  68. T. Christoph, B. Kogel, K. Schiene, M. Meen, J. De Vry, and E. Friderichs. Broad analgesic profile of buprenorphine in rodent models of acute and chronic pain. Eur. J. Pharmacol 507:87–98 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. L. Grumbach. The prediction of analgesic activity in man by animal testing. In: R. S. Knighton, P. R. Dumke (eds.), Pain, 15th International Symposium, Detroit, 1964. Little Brown, Boston, 1996, pp. 163–182.

  70. M. Eaton. Common animal models for spasticity and pain. J. Rehabil. Res. Dev. 40(4) Supplement:41–54 (2003).

    Article  Google Scholar 

  71. I. Lizasoain. Buprenorphine: bell-shaped dose response curve for its antagonist effects. Gen. Pharmacol. 22 297–300 (1991).

    PubMed  CAS  Google Scholar 

  72. K. Lutfy, S. Eitan, C. D. Bryant, Y. C. Yang, N. Saliminejad, W. Walwyn, B. L. Kieffer, H. Takeshima, and F. I. Carroll. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors. J. Neurosci. 23(32):10331–10337 (2003).

    PubMed  CAS  Google Scholar 

  73. I. Korzeniewska-Rybicka, and A. Plaznik. Analgesic effects of antidepressant drugs. Pharmacol. Biochem. Behav. 59:331–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. S. W. Hajare, S. Chandra, S.K. Tandon, J. Sarma, J. Lal, and A. G. Telang. Analgesic and antipyretic activities of Dalbergia Sissoo leaves. Indian J. Pharmacol. 32:357–60 (2000).

    Google Scholar 

  75. K. D. Effraim, U. A. Osunkwo, P. Onyeyilli, and A. Ngulde. Preliminary investigation of possible antinociceptive activity of aqueous leaf extract Ziziphus spina Christi (Linn). Indian J. Pharmacol. 30:271–272 (1998).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Chad Brown for his help in preparation of this manuscript and Mr. Jae Hee Jang for his skillful technical support. The authors acknowledge Yun Jeong Kim and Seung Jin Baek of Biotoxtech, Korea, for conducting the skin irritation and analgesic experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Ok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, I., Kim, D., Song, J. et al. Buprederm™, a New Transdermal Delivery System of Buprenorphine: Pharmacokinetic, Efficacy and Skin Irritancy Studies. Pharm Res 25, 1052–1062 (2008). https://doi.org/10.1007/s11095-007-9470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9470-6

Key words

Navigation