Skip to main content
Log in

Quantification of Crystallinity in Substantially Amorphous Materials by Synchrotron X-ray Powder Diffractometry

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of this study was to develop a highly sensitive powder X-ray diffraction (XRD) technique for quantification of crystallinity in substantially amorphous pharmaceuticals, utilizing synchrotron radiation and a 2-D area detector.

Methods

Diffraction data were acquired at the European Synchrotron Radiation Facility (France) using a 2-D charge-coupled device detector. The crystallization of amorphous sucrose was monitored in situ, isothermally at several temperatures in the range of 90 to 160°C. An algorithm was developed for separation of the crystalline and amorphous intensities from the total diffraction pattern.

Results

The synchrotron XRD technique allowed powder diffraction patterns to be recorded with a time resolution of 40 ms. The gradual crystallization of sucrose is analogous to a series of physical mixtures with increasing content of the crystalline component. The in situ crystallization approach circumvented the problem of inhomogeneity in mixing—a potentially serious issue at extreme mixture compositions. The estimated limit of detection of crystalline sucrose in an amorphous matrix was 0.2% w/w, a considerable improvement over the reported value of ∼1% w/w with a conventional XRD.

Conclusion

High-intensity XRD can discern subtle changes in the lattice order of materials. The first evidence of crystallization can serve as an indicator of the potential physical instability of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Miyazaki H. Endo T. Nadai T. Arita M. Nakano (1977) ArticleTitleEffect of formulation additives on the dissolution behavior of tetracycline antibiotics Chem. Pharm. Bull. 25 1186–1193 Occurrence Handle890850

    PubMed  Google Scholar 

  2. H. Imaizumi N. Nambu T. Nagai (1980) ArticleTitleStability and several physical properties of amorphous and crystalline form of indomethacin Chem. Pharm. Bull. 28 2565–2569 Occurrence Handle7460092

    PubMed  Google Scholar 

  3. J. D. Mullins T. J. Macek (1960) ArticleTitleSome pharmaceutical properties of novobiocin J. Am. Pharm. Assoc. 49 245–248

    Google Scholar 

  4. K. Tanaka T. Takeda K. Miyajima (1991) ArticleTitleCryoprotective effect of saccharides on denaturation of catalase by freeze-drying Chem. Pharm. Bull. 39 1091–1094

    Google Scholar 

  5. K. Izutsu S. Yoshioka T. Terao (1994) ArticleTitleEffect of mannitol crystallinity on the stabilization of enzymes during freeze-drying Chem. Pharm. Bull. 42 5–8 Occurrence Handle8124765

    PubMed  Google Scholar 

  6. K. Izutsu S. Yoshioka T. Terao (1993) ArticleTitleDecreased protein-stabilizing effects of cryoprotectants due to crystallization Pharm. Res. 10 1232–1237 Occurrence Handle10.1023/A:1018988823116 Occurrence Handle8415413

    Article  PubMed  Google Scholar 

  7. M. Yoshioka B. C. Hancock G. Zografi (1994) ArticleTitleCrystallization of indomethacin from the amorphous state below and above its glass transition temperature J. Pharm. Sci. 83 1700–1705 Occurrence Handle7891297

    PubMed  Google Scholar 

  8. InstitutionalAuthorNameInternational Conference on Harmonisation (ICH) (2000) ArticleTitleDraft guidance on Q6A specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances Fed. Regist. 65 83041–83063

    Google Scholar 

  9. InstitutionalAuthorNameU.S. Department of Health and Human Services, Food and Drug Administration (2003) ArticleTitleProcess analytical technology—a framework for innovative pharmaceutical manufacturing and quality assurance. Draft guidance Fed. Regist. 68 52781–52782

    Google Scholar 

  10. S. Byrn R. Pfeiffer M. Ganey C. Hoiberg G. Poochikian (1995) ArticleTitlePharmaceutical solids: a strategic approach to regulatory considerations Pharm. Res. 12 945–954 Occurrence Handle10.1023/A:1016241927429 Occurrence Handle7494814

    Article  PubMed  Google Scholar 

  11. L. S. Taylor G. Zografi (1998) ArticleTitleThe quantitative analysis of crystallinity using FT-Raman spectroscopy Pharm. Res. 15 755–761 Occurrence Handle10.1023/A:1011979221685 Occurrence Handle9619786

    Article  PubMed  Google Scholar 

  12. A. Saleki-Gerhardt C. Ahlneck G. Zografi (1994) ArticleTitleAssessment of disorder in crystalline solids Int. J. Pharm. 101 237–247 Occurrence Handle10.1016/0378-5173(94)90219-4

    Article  Google Scholar 

  13. T. Sebhatu M. Angberg C. Ahlneck (1994) ArticleTitleAssessment of the degree of disorder in crystalline solids by isothermal microcalorimetry Int. J. Pharm. 104 135–144 Occurrence Handle10.1016/0378-5173(94)90188-0

    Article  Google Scholar 

  14. M. J. Pikal A. L. Lukes J. E. Lang K. Gaines (1978) ArticleTitleQuantitative crystallinity determinations for beta-lactam antibiotics by solution calorimetry: correlations with stability J. Pharm. Sci. 67 767–773 Occurrence Handle660451

    PubMed  Google Scholar 

  15. R. Suryanarayanan (1995) X-ray powder diffractometry H. G. Brittain (Eds) Physical Characterization of Pharmaceutical Sciences Marcel Dekker New York 187–221

    Google Scholar 

  16. P. H. Hermans A. Weidinger (1948) ArticleTitleQuantitative X-ray investigation on the crystallinity of cellulose fibers. A background analysis J. Appl. Phys. 19 491–506 Occurrence Handle10.1063/1.1698162

    Article  Google Scholar 

  17. P. H. Hermans A. Weidinger (1950) ArticleTitleQuantitative investigation of X-ray diffraction by “amorphous” polymers and some other noncrystalline substances J. Polym. Sci. 5 269–281 Occurrence Handle10.1002/pol.1950.120050301

    Article  Google Scholar 

  18. R. Surana R. Suryanarayanan (2000) ArticleTitleQuantitation of crystallinity in substantially amorphous pharmaceuticals and study of crystallization kinetics by X-ray powder diffractometry Powder Diffr. 15 2–6

    Google Scholar 

  19. A. Saleki-Gerhardt G. Zografi (1994) ArticleTitleNon-isothermal and isothermal crystallization of sucrose from the amorphous state Pharm. Res. 11 1166–1173 Occurrence Handle10.1023/A:1018945117471 Occurrence Handle7971719

    Article  PubMed  Google Scholar 

  20. C. J. Kedward W. MacNaughtan J. R. Mitchell (2000) ArticleTitleIsothermal and non-isothermal crystallization in amorphous sucrose and lactose at low moisture contents Carbohydr. Res. 329 423–430 Occurrence Handle10.1016/S0008-6215(00)00179-8 Occurrence Handle11117325

    Article  PubMed  Google Scholar 

  21. B. Makower W. B. Dye (1956) ArticleTitleEquilibrium moisture content and crystallization of amorphous sucrose and glucose J. Agric. Food Chem. 4 72–77 Occurrence Handle10.1021/jf60059a010

    Article  Google Scholar 

  22. K. G. Scoik ParticleVan J. T. Carstensen (1990) ArticleTitleNucleation phenomena in amorphous sucrose systems Int. J. Pharm. 58 185–196 Occurrence Handle10.1016/0378-5173(90)90194-9

    Article  Google Scholar 

  23. A. Mahendrasingam W. Fuller V. T. Forsyth R. J. Oldman D. MacKerron D. J. Blundell (1992) ArticleTitleX-ray camera for high- and small-angle X-ray diffraction studies of the drawing and annealing of polymers at Daresbury Synchrotron Radiation Source Rev. Sci. Instrum. 63 1087–1090

    Google Scholar 

  24. C. Nunes. Use of High-Intensity X-Radiation in Solid-State Characterization of Pharmaceuticals, Ph.D. Dissertation, Department of Pharmaceutics, University of Minnesota, 2005.

  25. A. Mahendrasingam C. Martin S. Bingham W. Fuller D. J. Blundell (2000) ArticleTitleSynchrotron studies of polymers at high spatial and temporal resolution Adv. X-ray Anal. 43 356–365

    Google Scholar 

  26. A. Mahendrasingam D. J. Blundell A. K. Wright V. Urban T. Narayanan W. Fuller (2003) ArticleTitleObservations of structure development during crystallisation of oriented poly(ethylene terephthalate) Polymer 44 5915–5925 Occurrence Handle10.1016/S0032-3861(03)00542-1

    Article  Google Scholar 

  27. D. J. Hughes A. Mahendrasingam C. Martin W. B. Oatway E. L. Heeley S. J. Bingham W. Fuller (1999) ArticleTitleAn instrument for the collection of simultaneous small and wide angle X-ray scattering and stress–strain data during deformation of polymers at high strain rates using synchrotron radiation sources Rev. Sci. Instrum. 70 4051–4054 Occurrence Handle10.1063/1.1150034

    Article  Google Scholar 

  28. Powder Diffraction File (PDF-2), International Centre for Diffraction Data, Newtown Square, PA, 1998.

  29. G. Zografi (1988) ArticleTitleStates of water associated with solids Drug Dev. Ind. Pharm. 14 1905–1926

    Google Scholar 

  30. M. J. Kontny G. Zografi (1995) Sorption of water by solids H. G. Brittain (Eds) Physical Characterization of Pharmaceutical Solids Marcel Dekker New York 387–418

    Google Scholar 

  31. B. C. Hancock G. Zografi (1997) ArticleTitleCharacteristics and significance of the amorphous state in pharmaceutical systems J. Pharm. Sci. 86 1–12 Occurrence Handle10.1021/js9601896 Occurrence Handle9002452

    Article  PubMed  Google Scholar 

  32. G. A. Stephenson R. A. Forbes S. M. Reutzel-Edens (2001) ArticleTitleCharacterization of the solid state: quantitative issues Adv. Drug Deliv. Rev. 48 67–90 Occurrence Handle10.1016/S0169-409X(01)00099-0 Occurrence Handle11325477

    Article  PubMed  Google Scholar 

  33. D. B. Black E. G. Lovering (1977) ArticleTitleEstimation of the degree of crystallinity in digoxin by X-ray and infrared methods J. Pharm. Pharmacol. 29 684–687 Occurrence Handle22603

    PubMed  Google Scholar 

  34. A. Galvan-Sanchez F. Urena-Nunez H. Flores-Llamas R. Lopez-Castanares (1999) ArticleTitleDetermination of the crystallinity index of iron polymethacrylate J. Appl. Polym. Sci. 74 995–1002 Occurrence Handle10.1002/(SICI)1097-4628(19991024)74:4<995::AID-APP26>3.0.CO;2-N

    Article  Google Scholar 

  35. S. L. Shamblin E. Y. Huang G. Zografi (1996) ArticleTitleThe effects of co-lyophilized polymeric additives on the glass transition temperature and crystallization of amorphous sucrose J. Therm. Anal. 47 1567–1579 Occurrence Handle10.1007/BF01992846

    Article  Google Scholar 

  36. D. A. Skoog J. J. Leary (1992) Principles of Instrumental Analysis Harcourt Brace College Forth Worth, TX

    Google Scholar 

  37. V. Thomsen D. Schatzlein D. Mercuro (2003) ArticleTitleLimits of detection in spectroscopy Spectroscopy 18 112–114

    Google Scholar 

Download references

Acknowledgments

This work was made possible by the allocation of beam time at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We thank Dr. Theyencheri Narayanan, Scientist in Charge, ID2 High Brilliance Beamline, ESRF for his assistance and support. The scientific and technical support provided by Dr. Ramprakash Govindarajan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, C., Mahendrasingam, A. & Suryanarayanan, R. Quantification of Crystallinity in Substantially Amorphous Materials by Synchrotron X-ray Powder Diffractometry. Pharm Res 22, 1942–1953 (2005). https://doi.org/10.1007/s11095-005-7626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-7626-9

Key Words

Navigation