Skip to main content
Log in

Low Temperature Catalytic Hydrolysis of Carbon Disulfide on Activated Carbon Fibers Modified by Non-thermal Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In order to improve the carbon disulfide (CS2) catalytic hydrolysis efficiency of activated carbon fibers (ACFs), ACFs surface was modified by non-thermal plasma (NTP). In particular, the effects of modification conditions on the catalyst properties were studied, including the reactor structure, modification atmosphere, modification time, output voltage and discharge gap. The catalytic activity study showed that ACFs with NTP modification enhanced CS2 catalytic hydrolysis. The optimal reactor structure, modification atmosphere, modification time, output voltage and discharge gap was a coaxial cylinder, an N2 atmosphere, 5 min, 7 kV and 7.5 mm, respectively. The effect of the NTP modification on the micro-structural properties of the ACFs was characterized using scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS) methods. The results showed that NTP modification improved the dispersion of functional groups and increased the number of oxygen-containing and nitrogen-containing functional groups, thus the catalytic activity could be enhanced. The present results indicated that NTP modification was an effective way to manipulate ACFs surface properties for the CS2 catalytic hydrolysis reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rhodes C, Riddel SA, West J, Williams BP, Hutchings GJ (2000) Catal Today 59:443–464

    Article  CAS  Google Scholar 

  2. Wronska-Nofer T, Nofer JR, Stetkiewicz J, Wierzbicka M, Bolinska H, Fobker M, Schulte H, Assmann G, Eckardstein A (2007) Nutrition. Metab Cardiovasc Dis 17:546–553

    Article  CAS  Google Scholar 

  3. Yegiazarov Y, Clark J, Potapova L, Radkevich V, Yatsimirsky V, Brunel D (2005) Catal Today 102–103:242–247

    Article  Google Scholar 

  4. Cox SF, McKinley JD, Ferguson AS, O’Sullivan G, Kalin RM (2013) Environ Earth Sci 68:1935–1944

    Article  CAS  Google Scholar 

  5. Pitschmann V, Kobliha Z, Tušarová I (2013) Spectrophotometric determination of carbon disulphide in the workplace air. J Chem. doi:10.1155/2013/506780

    Google Scholar 

  6. Wang L, Wang SD, Yuan Q (2010) Fuel 89:1716–1720

    Article  CAS  Google Scholar 

  7. Yi H, He D, Tang X, Wang H, Zhao S, Li K (2012) Fuel 97:337–343

    Article  CAS  Google Scholar 

  8. Zhang L, Li F (2010) Electrochim Acta 55:6695–6702

    Article  CAS  Google Scholar 

  9. Shafiei M, Alpas AT (2011) J Power Sources 196:7771–7778

    Article  CAS  Google Scholar 

  10. Du C, Huang D, Li H, Xiao M, Wang K, Zhang L, Li Z, Chen T, Mo J, Gao D, Huang Y, Liu S, Yu L, Zhang C (2013) Plasma Chem Plasma Process 33:65–82

    Article  CAS  Google Scholar 

  11. Xu B, Lu Y (2006) J Raman Spectrosc 37:1423–1426

    Article  CAS  Google Scholar 

  12. Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS (2003) Carbon 41:1941–1947

    Article  CAS  Google Scholar 

  13. Moghaddam RB, Pickup PG (2011) Electrochim Acta 56:7666–7672

    Article  CAS  Google Scholar 

  14. Ueshima M, Toda E, Nakajima Y, Sugiyama K (2010) Jpn J Appl Phys 49:08JA03–08JA03-6

    Article  Google Scholar 

  15. Kopec KK, Dutczak SM, Wessling M, Stamatialis DF (2011) J Membr Sci 369:308–318

    Article  CAS  Google Scholar 

  16. Park SJ, Kim BJ (2004) J Colloid Interface Sci 275:590–595

    Article  CAS  Google Scholar 

  17. Domingo-Garcia M, Lopez-Garzon FJ, Perez-Mendoza M (2000) J Colloid Interface Sci 222:233–240

    Article  CAS  Google Scholar 

  18. Kodama S, Habaki H, Sekiguchi H, Kawasaki J (2002) Thin Solid Films 407:151–155

    Article  CAS  Google Scholar 

  19. Wen HC, Yang K, Qu KL, Wu WF, Chou CP, Luo RC, Chang YM (2006) Surf Coat Tech 200:3166–3169

    Article  CAS  Google Scholar 

  20. Boudou JP, Paredes JI, Cuesta A, Martinez-Alonso A, Tascon JMD (2003) Carbon 41:41–56

    Article  CAS  Google Scholar 

  21. Lee D, Hong SH, Paek KH, Ju WT (2005) Surf Coat Technol 200:2277–2282

    Article  CAS  Google Scholar 

  22. Li X, Qiao G, Chen J (2008) Rare Metal Mater Eng 37:296–299

    Google Scholar 

  23. Li H, Liang H, He F, Huang Y, Wan YZ (2009) Surf Coat Technol 203:1317–1321

    Article  CAS  Google Scholar 

  24. Choudhury AJ, Chutia J, Barve SA, Kakati H, Pal AR, Mithal N, Kishore R, Pandey M, Patil DS (2011) Prog Org Coat 70:75–82

    Article  CAS  Google Scholar 

  25. Joshi R, Schulze RD, Meyer-Plath A, Wagner MH, Friedrich JF (2009) Plasma Process Polym 6:S218–S222

    Article  CAS  Google Scholar 

  26. Yang KS, Yoon YJ, Lee MS, Lee WJ, Kim JH (2002) Carbon 40:897–903

    Article  CAS  Google Scholar 

  27. Lesueur H, Czernichowski A (1988) French Patent no. 2639172

  28. Moreau M, Orange N, Feuilloley MGJ (2008) Biotechnol Adv 26:610–617

    Article  CAS  Google Scholar 

  29. Neyts E, Ostrikov K, Sunkara M, Bogaerts A (2015) Chem Rev 115:13408–13446

    Article  CAS  Google Scholar 

  30. Che Y, Zhou J, Wang Z (2013) Plasma Sci Technol 15:1047–1052

    Article  Google Scholar 

  31. Chen J, Xie Z (2013) J Hazard Mater 261:38–43

    Article  CAS  Google Scholar 

  32. Xin L, Sun Y, Feng J, Wang J, He D (2016) Chemosphere 144:855–863

    Article  CAS  Google Scholar 

  33. Tang S, Lu N, Wang JK, Ryu SK, Choi HS (2007) J Phys Chem C 111:1820–1829

    Article  CAS  Google Scholar 

  34. Li K, Liu G, Gao T, Lu F, Tang L, Liu S, Ning P (2016) Appl Catal A 527:171–181

    Article  CAS  Google Scholar 

  35. Yick S, Han Z, Ostrikov K (2013) Chem Commun 49:2861–2863

    Article  CAS  Google Scholar 

  36. Zhang H, Li W (2015) Appl Surf Sci 356:492–498

    Article  CAS  Google Scholar 

  37. Jones C, Sammann E (1990) Carbon 28:509–514

    Article  CAS  Google Scholar 

  38. Huang HC, Ye DQ, Huang BC (2007) Surf Coat Technol 201:9533–9540

    Article  CAS  Google Scholar 

  39. Zhang B, Xu P, Qiu Y, Yu Q, Ma J, Wu H, Luo G, Xu M, Yao H (2015) Chem Eng J 263:1–8

    Article  CAS  Google Scholar 

  40. Orfanoudakia T, Skodrasb G, Doliosb I, Sakellaropoulos GP (2003) Fuel 82:2045–2049

    Article  Google Scholar 

  41. Lingareddy E, Biju VM, Subrahmanyam C (2011) Int J Chem Environ Eng 2:87–90

    CAS  Google Scholar 

  42. Boehm HP (1996) Adv Catal 16:179–274

    Google Scholar 

  43. Tang X, Li K, Yi H, Ning P, Xiang Y, Wang J, Wang C (2012) J Phys Chem C 116:10017–10028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (51408282, 21667015 and 21367016) and the Analysis and Testing Foundation of Kunming University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Ning, P., Li, K. et al. Low Temperature Catalytic Hydrolysis of Carbon Disulfide on Activated Carbon Fibers Modified by Non-thermal Plasma. Plasma Chem Plasma Process 37, 1175–1191 (2017). https://doi.org/10.1007/s11090-017-9813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9813-y

Keywords

Navigation