Skip to main content
Log in

Fluid Simulation of Capacitively Coupled HBr/Ar Plasma for Etching Applications

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, a fluid model has been applied to study HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. Based on time average reaction rates, the model identify the most dominant species in HBr/Ar plasma. Our simulation results show that the neutral species like H and Br, which are the key precursors in chemical etching, have bell shape distribution while ions like HBr+, Br+ and Ar+ which plays a dominant role in the physical etching, have double humped distribution and shows peaks near electrodes. The effect of HBr/Ar mixing ratios on densities of dominant species are analyzed. The addition of Ar to HBr plasma decreases H, Br and HBr+ densities slightly while increases Br+ and Ar+ densities. It was found that the dilution of HBr by Ar results in an increase in electron density and electron temperature, which results in more ionization and dissociation. The densities and hence the fluxes of the neutrals and positive ions for etching and subsequently chemical etching versus physical etching in HBr/Ar plasmas discharge can be controlled by tuning Ar concentration in the discharge and the desire etching can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, New York

    Book  Google Scholar 

  2. Vahedi V, Birdsall CK, Lieberman MA, DiPeso G, Rognlien TD (1993) Phys Fluids B Plasma Phys 5:2719

    Article  CAS  Google Scholar 

  3. Georgieva V, Bogaerts A, Gijbels R (2003) J Appl Phys 94:3748

    Article  CAS  Google Scholar 

  4. Kim HC, Iza F, Yang SS, Radmilović-Radjenović M, Lee JK (2005) J Phys D Appl Phys 38:R283

    Article  CAS  Google Scholar 

  5. Ji-Myon L, Ki-Myung C, Kyoung-Kook K, Won-Kook C, Seong-Ju P (2001) J Electrochem Soc 148:G1

    Article  Google Scholar 

  6. Shin MH, Park MS, Jung SH, Boo JH, Lee NE (2007) Thin Solid Films 515:4950

    Article  CAS  Google Scholar 

  7. Na SW, Shin MH, Chung YM, Han JG, Jeung SH, Boo JH, Lee N-E (2006) Microelectron Eng 83:328

    Article  CAS  Google Scholar 

  8. Kim H-K, Bae JW, Kim T-K, Kim K-K, Seong T-Y, Adesida I (2003) J Vac Sci Technol B Microelectron Nanom Struct 21:1273

    Article  CAS  Google Scholar 

  9. Bae J-W, Jeong C-H, Kim H-K, Kim K-K, Cho N-G, Seong T-Y, Park S-J, Adesida I, Yeom G-Y (2003) Jpn J Appl Phys 42:L535

    Article  CAS  Google Scholar 

  10. Pearton SJ, Chakrabarti UK, Lane E, Perley AP, Abernathy CR, Hobson WS, Jones KS (1992) J Electrochem Soc 139:856

    Article  CAS  Google Scholar 

  11. Kuo Y, Tai TL (1998) J Electrochem Soc 145:4313

    Article  CAS  Google Scholar 

  12. Shul RJ, McClellan GB, Briggs RD, Rueger DJ, Pearton SJ, Abernathy CR, Lee JW, Constantine C, Barrat C (1997) J Vac Sci Technol A Vac Surf Film 15:633

    Article  CAS  Google Scholar 

  13. Flamm D (1990) Pure Appl Chem 62:1709

    Article  CAS  Google Scholar 

  14. Aldao CM, Weaver JH (2001) Prog Surf Sci 68:189

    Article  CAS  Google Scholar 

  15. Roth JR (1995) Industrial plasma engineering. The Institute of Physics, London

  16. Sugano T (1985) Applications of plasma processes to VLSI technology, 1st edn. Wiley, New York

  17. Flamm DL, Donnelly VM, Mucha JA (1981) J Appl Phys 52:3633

    Article  CAS  Google Scholar 

  18. Winters H, Coburn J (1992) Surf Sci Rep 14:161

    Article  CAS  Google Scholar 

  19. Layadi N, Colonell J, Lee J (1999) Bell Labs Tech J 4:155

    Article  Google Scholar 

  20. Mahorowala AP, Sawin HH, Jones R, Labun AH (2002) J Vac Sci Technol B Microelectron Nanom Struct 20:1055

    Article  CAS  Google Scholar 

  21. Desvoivres L, Vallier L, Joubert O (2000) J Vac Sci Technol B Microelectron Nanom Struct 18:156

    Article  CAS  Google Scholar 

  22. Smirnov AA, Efremov AM, Svettsov VI (2010) Russ Microelectron 39:418

    Article  CAS  Google Scholar 

  23. Ham Y-H, Efremov A, Yun SJ, Kim JK, Min N-K, Kwon K-H (2009) Thin Solid Films 517:4242

    Article  CAS  Google Scholar 

  24. Lee HW, Kim M, Min N-K, Efremov A, Lee C-W, Kwon K-H (2008) Jpn J Appl Phys 47:6917

    Article  CAS  Google Scholar 

  25. Efremov A, Kim Y, Lee H, Kwon K (2011) Plasma Chem Plasma Process 31:259

    Article  CAS  Google Scholar 

  26. Ham Y-H, Efremov A, Lee HW, Yun SJ, Min NK, Baek K-H, Do L-M, Kwon K-H (2011) Vacuum 85:1021

    Article  CAS  Google Scholar 

  27. Gul B, Tinck S, De Schepper P, Rehman A, Bogaerts A (2015) J Phys D Appl Phys 48:025202

    Article  Google Scholar 

  28. Kim D-p, Kim G-H, Woo J-C, Kim H-J, Kim C-I, Lee C-I, Lee S-K, Jung T-W, Moon S-C, Park S-W (2009) J Korean Phys Soc 54:934

  29. Chung CW, Byun YH, Kim HI (2002) Korean J Chem Eng 19:524

    Article  CAS  Google Scholar 

  30. Lishan D, Lee J, Kim G (2001) InP processing using an HBr high density ICP plasma. GaAs MANTECH, Inc.

  31. Ping AT, Adesida I, Asif M, Kuznia JN (1994) Electron Lett 30:1895

    Article  CAS  Google Scholar 

  32. Min SR, Cho HN, Li YL, Chung CW (2008) Thin Solid Films 516:3521

    Article  CAS  Google Scholar 

  33. Panda S, Wise R, Mosden A, Sugiyama K, Camilleri J (2004) Microelectron Eng 75:275

    Article  CAS  Google Scholar 

  34. Šašić O, Dujko S, Makabe T, Petrović ZL (2012) Chem Phys 398:154

    Article  Google Scholar 

  35. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14:722

    Article  CAS  Google Scholar 

  36. Tachibana K (1986) Phys Rev A 34:1007

    Article  CAS  Google Scholar 

  37. Rapp D, Englander-Golden P (1965) J Chem Phys 43:1464

    Article  CAS  Google Scholar 

  38. Tinck S, Boullart W, Bogaerts A (2009) J Phys D Appl Phys 42:095204

    Article  Google Scholar 

  39. Kushner MJ (2009) J Phys D Appl Phys 42:194013

    Article  Google Scholar 

  40. Ali MA, Kim Y-K (2008) J Phys B At Mol Opt Phys 41:145202

    Article  Google Scholar 

  41. Corrigan SJB (1965) J Chem Phys 43:4381

    Article  CAS  Google Scholar 

  42. Banks P (1966) Planet Space Sci 14:1085

    Article  CAS  Google Scholar 

  43. Kushner MJ (1988) J Appl Phys 63:2532

    Article  CAS  Google Scholar 

  44. Rehman A, Kwon HC, Park WT, Lee JK (2011) Phys Plasmas 18:093502

    Article  Google Scholar 

  45. Gul B, Rehman A (2016) Phys Plasmas 23:043506

    Article  Google Scholar 

  46. Perrin J, Leroy O, Bordage M (1996) Contrib Plasma Phys 36:3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Higher Education Commission of Pakistan (HEC) for financial support under the Indigenous PhD Program. Authors are grateful to O. Šašić (Institute of physics, Belgrade, Serbia) for provision of electrons cross section and transport coefficient data of HBr for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banat Gul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, B., Rehman, Au. Fluid Simulation of Capacitively Coupled HBr/Ar Plasma for Etching Applications. Plasma Chem Plasma Process 36, 1363–1375 (2016). https://doi.org/10.1007/s11090-016-9726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9726-1

Keywords

Navigation