Skip to main content
Log in

Experimental Study of the Transient Response of Bunsen Flame to Nanosecond Pulsed Discharges

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The transient processes associated with the interaction of a Bunsen flame and nanosecond pulsed discharges (NPD) are explored experimentally with two optical methods. A nanosecond-gated schlieren system is employed to image the shockwave propagation and the hydrodynamic response of the flame to NPD while the time-resolved optical emission spectroscopy measurements are carried out to determine active species and temperature in the plasma region created by the discharges. Therefore, the unsteady process of the interaction of the flame with the discharges is recorded in real-time by the combined measurements. Numbers of experimental evidences for understanding the dynamics of non-equilibrium plasma produced by NPD and performing further numerical simulation are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim W, Do H, Mungal MG, Cappelli MA (2008) Optimal discharge placement in plasma-assisted combustion of a methane jet in cross flow. Combust Flame 15:3603

    Google Scholar 

  2. Starikovskiy A, Aleksandrov N (2013) Plasma-assisted ignition and combustion. Prog Energy Combust Sci 39:61

    Article  CAS  Google Scholar 

  3. Starikovskaia SM (2014) Nanosecond discharges and development of kinetic mechanisms. J Phys D: Appl Phys 47:353001

    Article  Google Scholar 

  4. Kim Y, Ferreri VW, Rosocha LA, Anderson GK (2006) Effect of plasma chemistry on activated propane/air flames. IEEE Trans Plasma Sci 34:2532

    Article  CAS  Google Scholar 

  5. Wang F, Liu JB, Sinibaldi J, Brophy C, Kuthi A, Jiang C, Ronney P, Gundersen M (2005) Transient plasma ignition of quiescent and flowing air/fuel mixtures. IEEE Trans Plasma Sci 33:844

    Article  CAS  Google Scholar 

  6. Babaritskii AI, Baranov IE, Bibikov MB, Demkin SA, Zhivotov VK, Konovalov GM, Lysov GV, Moskovskii AS, Rusanov VD, Smirnov RV, Chebankov FN (2004) Artial hydrocarbon oxidation processes induced by atmospheric pressure microwave discharge plasma. High Energy Chem 38:407

    Article  CAS  Google Scholar 

  7. Yu Starikovskii A (2005) Plasma supported combustion. Proc Combust Inst 30:2405

    Article  Google Scholar 

  8. Reinhard N (2012) Laser-induced breakdown spectroscopy fundamentals and applications. Springer, Heidelberg, Dordrecht, London, New York

    Google Scholar 

  9. Miziolek AW, Palleschi V, Schechter I (2006) Laser-induced breakdown spectroscopy: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Ombrello T, Qin X, Ju Y, Gutsol A, Fridman A, Campbell C (2006) Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge. AIAA J 44:142

    Article  Google Scholar 

  11. Sun W, Uddi M, Ombrello T, Won SH, Carter C, Ju Y (2011) Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction. Proc Combust Inst 33:3211

    Article  CAS  Google Scholar 

  12. Starik AM, Kozlov VE, Titova NS (2010) On the influence of singlet oxygen molecules on the speed of flame propagation in methane–air mixture. Combust Flame 157:313

    Article  CAS  Google Scholar 

  13. Ombrello T, Won SH, Ju Y, Williams S (2010) Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg). Combust Flame 157:1916

    Article  CAS  Google Scholar 

  14. Kosarev IN, Aleksandrov NL, Kindysheva SV, Starikovskaia SM, Yu Starikovskii A (2008) Kinetic mechanism of plasma-assisted ignition of hydrocarbons. J Phys D Appl Phys 41:032002

    Article  Google Scholar 

  15. Aleksandrov NL, Kindysheva SV, Kosarev IN, Starikovskaia SM, Yu Starikovskii A (2009) Mechanism of ignition by non-equilibrium plasma. Proc Combust Inst 32:205

    Article  CAS  Google Scholar 

  16. Popov NA (2001) Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges. Plasma Phys Rep 27:886

    Article  Google Scholar 

  17. Stancu GD, Kaddouri F, Lacoste DA, Laux CO (2010) Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. J Phys D Appl Phys 43:124002

    Article  Google Scholar 

  18. Pai DZ, Lacoste DA, Laux CO (2010) Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime. Plasma Sources Sci Technol 19:065015

    Article  Google Scholar 

  19. Adamovich IV, Lempert WR (2015) Challenges in understanding and development of redictive models of plasma assisted combustion. Plasma Phys Control Fusion 57:014001

    Article  Google Scholar 

  20. Settles GS (2001) Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer, New York

    Book  Google Scholar 

  21. Aleksandrov NL, Kindysheva SV, Kukaev EN, Starikovskaya SM, Yu Starikovskii A (2009) Simulation of the ignition of a methane–air mixture by a high-voltage nanosecond discharge. Plasma Phys Rep 35:867

    Article  CAS  Google Scholar 

  22. Xu DA, Lacoste DA, Rusterholtz DL, Elias P-Q, Stancu GD, Laux CO (2011) Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air. Appl Phys Lett 99:121502

    Article  Google Scholar 

  23. Gottfried JL (2014) Influence of exothermic chemical reactions on laser-induced shock waves. Phys Chem Chem Phys 16(39):21452

    Article  CAS  Google Scholar 

  24. Germany GA, Anderson RJ, Salamo GJ (1988) Electron impact excitation of the 3p(5P) state of atomic oxygen. J Chem Phys 89:1999

    Article  CAS  Google Scholar 

  25. Kotzagianni M, Couris S (2013) Femtosecond laser induced breakdown spectroscopy of air–methane mixtures. Chem Phys Lett 561–562:36

    Article  Google Scholar 

  26. Frenklach M et al. http://www.me.berkeley.edu/gri_mech/

  27. Bak MS, Do H, Mungal MG, Cappelli MA (2012) Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit. Combust Flame 159:3128

    Article  CAS  Google Scholar 

  28. Vivien C, Hermann J, Perrone A, Boulmer-Leborgne C, Luches A (1998) A study of molecule formation during laser ablation of graphite in low-pressure nitrogen. J Phys D 31:1263

    Article  CAS  Google Scholar 

  29. St-Onge L, Sing R, Béchard S, Sabsabi M (1999) Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air. Appl Phys A Mater Sci Process. 69:S913

    Article  CAS  Google Scholar 

  30. Ma Q, Dagdigian PJ (2011) Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds. Anal Bioanal Chem 400:3193

    Article  CAS  Google Scholar 

  31. Fernández-Bravo Á, Delgado T, Lucena P, Javier Laserna J (2013) Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds. Spectrochim Acta Part B 89:77

    Article  Google Scholar 

  32. Moon SY, Kim DB, Gweon B, Choe W (2008) Spectroscopic characterization of rovibrational temperatures in atmospheric pressure He/CH4 plasmas. Phys Plasmas 15:103504

    Article  Google Scholar 

  33. Pellerin S, Cormier JM, Richard F, Musiol K, Chapelle J (1996) A spectroscopic diagnostic method using UV OH band spectrum. J Phys D 29:726

    Article  CAS  Google Scholar 

  34. Jackson WM, Faris JL (1972) Quenching of the B2Σ+ state of the CN radical. J Chem Phys 56:95

    Article  CAS  Google Scholar 

  35. Parigger CG, Woods AC, Surmick DM, Gautama G, Witte MJ, Hornkohl JO (2015) Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim Acta Part B 107:132

    Article  CAS  Google Scholar 

  36. Hornkohl JO, Parigger C, Lewis JWL (1991) Temperature measurements from CN spectra in a laser-induced plasma. J Quant Spectrosc Radiat Transf 46:405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is partially supported by National Science Foundation of China (Grant Nos. 11102215 and 91216101). The authors acknowledge the technical assistance provided by S. Z. Zhang at the Institute of Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yu, X., Xiong, H. et al. Experimental Study of the Transient Response of Bunsen Flame to Nanosecond Pulsed Discharges. Plasma Chem Plasma Process 35, 1029–1042 (2015). https://doi.org/10.1007/s11090-015-9636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9636-7

Keywords

Navigation