Skip to main content
Log in

Plasma-Enhanced Methane Direct Conversion over Particle-Size Adjusted MOx/Al2O3 (M = Ti and Mg) Catalysts

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Non-oxidative methane activation over particle-size adjusted alumina catalysts loaded with metal oxide (Al2O3, MgO/Al2O3, and TiO2/Al2O3) was investigated with a dielectric barrier discharge reactor using 10 % CH4 in Ar at plasma induced temperature. Plasma-assisted catalytic activity for direct conversion of methane over the catalysts was compared with that using plasma only. Catalyst hybrid reaction in a non-thermal discharge showed that MgO/Al2O3 had the highest activity for methane conversion. C2, C3, and C4 hydrocarbons were formed as products; ethane, ethylene, and acetylene were predominant over all catalysts. The effect of varying particle size of the MgO/Al2O3 catalyst was also examined. The conversion of methane over MgO/Al2O3 dramatically increased with decreasing catalyst particle size from 1.70 to 0.25 mm. It is interesting to note that distribution of C2 hydrocarbons was tuned by changing the particle size of the catalyst. It was also observed that the gas flow rate, frequency, and power supplied affected direct conversion of methane and selectivity of products significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brook EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM (2000) Global Biogeochem Cycles 14:559–571

    Article  CAS  Google Scholar 

  2. Lashof DA, Ahuja DR (1990) Nature 344:529–531

    Article  CAS  Google Scholar 

  3. Lunsford JH (2000) Catal Today 63:165–174

    Article  CAS  Google Scholar 

  4. Ross JRH (1975) In: Roberts MW, Thomas JM (eds) Surface and defect properties of solids, vol 4. The Chemical Society, London

    Chapter  Google Scholar 

  5. Holmen A (2009) Catal Today 142:2–8

    Article  CAS  Google Scholar 

  6. Rostrup-Nielsen JR (1993) Catal Today 18:305–324

    Article  Google Scholar 

  7. Chou L, Cai Y, Zhang B, Niu J, Ji S, Li S (2002) J Nat Gas Chem 11:131–136

    CAS  Google Scholar 

  8. Pak S, Lunsford JH (1998) Appl Catal A 168:131–136

    Article  CAS  Google Scholar 

  9. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  10. Kado S, Sekine Y, Fujimoto K (1999) Chem Commun 24:2485–2486

    Article  Google Scholar 

  11. Alvarez-Galvan MC, Mota N, Ojeda M, Rojas S, Navarro RM, Fierro JLG (2011) Catal Today 171:15–23

    Article  CAS  Google Scholar 

  12. Młotek M, Sentek J, Krawczyk K, Schmidt-Szałowski K (2009) Appl Catal A Gen 366:232–241

    Article  Google Scholar 

  13. Liu C-J, Mallinson R, Lobban L (1998) J Catal 179:326–334

    Article  CAS  Google Scholar 

  14. Wang Z-J, Zhao Y, Cui L, Du H, Yao P, Liu C-J (2007) Green Chem 9:554–559

    Article  CAS  Google Scholar 

  15. Kim SH, Jung C-H, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Appl Catal A Gen 454:53–58

    Article  CAS  Google Scholar 

  16. Istadi I, Amin NAS (2006) Fuel 85:577–592

    Article  CAS  Google Scholar 

  17. Xu Y, Bao X, Lin L (1998) J Catal 216:386–395

    Article  Google Scholar 

  18. Kim S-S, Lee H, Song HK, Na B-K (2006) J Ind Eng Chem 12:558–565

    CAS  Google Scholar 

  19. Arif M, Malik SA, Xuaen-Zhen J (1998) J Gas Chem 2:166

    Google Scholar 

  20. Sentek J, Krawczyk K, Młotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K-H, Schmidt-Szałowski K (2010) Appl Catal B Environ 94:19–26

    Article  CAS  Google Scholar 

  21. Tu X, Whitehead JC (2012) Appl Catal B Environ 125:439–448

    Article  CAS  Google Scholar 

  22. Jo S, Lee DH, Kang SW, Song HY (2013) Phys Plasma 20:123507–123514

    Article  Google Scholar 

  23. Gallon HJ, Tu X, Whitehead JC (2012) Plasma Process Polym 9:90–97

    Article  CAS  Google Scholar 

  24. Tu X, Gallon JH, Whitehead JC (2011) J Phys D Appl Phys 44:482003–482007

    Article  Google Scholar 

  25. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007–274011

    Article  Google Scholar 

  26. Wan JKS, Chen YG, Lee YJ, Derew MC (2000) Res Chem Intermed 26:599–619

    Article  CAS  Google Scholar 

  27. Nozaki T, Hattori A, Okazaki K (2004) Catal Today 98:607–616

    Article  CAS  Google Scholar 

  28. Kostov KG, Honda RY, Alves LMS, Kayama ME (2009) Braz J Phys 39:322–325

    Article  CAS  Google Scholar 

  29. Manley TC (1943) Trans Electrochem Soc 84:83–96

    Article  Google Scholar 

  30. Nozaki T, Tsukijihara H, Fukui W, Okazki K (2007) Energy Fuels 21:2525–2530

    Article  CAS  Google Scholar 

  31. Coogan JJ, Sappey AD (1996) IEEE Trans Plasma Sci 24:91–92

    Article  CAS  Google Scholar 

  32. Yang Y (2003) Plasma Chem Plasma Process 23:327–346

    Article  CAS  Google Scholar 

  33. Hammer T, Kappes T, Baldauf M (2004) Catal Today 89:5–14

    Article  CAS  Google Scholar 

  34. Robertsona J (2004) Eur Phys J Appl Phys 28:265–291

    Article  Google Scholar 

  35. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  36. Trionfetti C, Agıral A, Gardeniers JGE, Lefferts L, Seshan K (2008) J Phys Chem C 112:4267–4274

    Article  CAS  Google Scholar 

  37. Indarto A, Choi JW, Lee H, Song HK (2006) J Nat Gas Chem 15:87–92

    Article  CAS  Google Scholar 

  38. Riccardi C, Barni R, Fontanesi M, Tosi P (2000) Chem Phys Lett 329:66–70

    Article  CAS  Google Scholar 

  39. Indarto A, Choi JW, Lee H, Song HK (2005) J Nat Gas Chem 14:13–21

    CAS  Google Scholar 

  40. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and material processing, 1st edn. Wiley, New York

    Google Scholar 

  41. Lee DH, Kim K-T, Song Y-H, Kang WS, Jo S (2013) Plasma Chem Plasma Process 33:249–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Korea Research Council for Industrial Science and Technology (ISTK) of the Republic of Korea, Grant Number B551179-11-03-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Kyu Hwang or Yong-Ki Park.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasinathan, P., Park, S., Choi, W.C. et al. Plasma-Enhanced Methane Direct Conversion over Particle-Size Adjusted MOx/Al2O3 (M = Ti and Mg) Catalysts. Plasma Chem Plasma Process 34, 1317–1330 (2014). https://doi.org/10.1007/s11090-014-9574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9574-9

Keywords

Navigation