Skip to main content
Log in

Plasma-Initiated DT Graft Polymerization of Acrylic Acid on Surface of Porous Polypropylene Membrane for Pore Size Control

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A plasma-initiated degenerative transfer (DT) graft polymerization (PDTGP) was carried out on the surface of porous polypropylene membrane, with acrylic acid as monomer and iodoform as transfer agent. The polymerization rate was found to increase linearly with time. Well-defined poly(acrylic acid), with a narrow polydispersity (1.31), were obtained. Less solvent effect was observed in the PDTGP, whereas stronger solvent occurred in the plasma-initiated polymerization without iodoform. It was speculated that the unconventional radical induced by plasma should behave similarly in forming the dormant species as the conventional radical did. The polymerization is proposed to undergo via a DT mechanism. For modified membranes, graft amounts were indicated to increase linearly with conversions, i.e., proportional to molecular weights of graft chains. The PDTGP was proved a desirable method for controlling pore sizes of porous membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matyjaszewski K, Patten TE, Xia J (1997) J Am Chem Soc 119:674–680

    Article  CAS  Google Scholar 

  2. Long S, Wan F, Yang W (2013) J Appl Polym Sci 128:2687–2693

    Article  CAS  Google Scholar 

  3. Matyjaszewski K, Tsarevsky NV (2009) Nat Chem 1:276–288

    Article  CAS  Google Scholar 

  4. Convertine AJ, Ayres N, Scales CW, Lowe AB, McCormick CL (2004) Biomacromolecules 5:1177–1180

    Article  CAS  Google Scholar 

  5. Iovu MC, Matyjaszewski K (2003) Macromolecules 36:9346–9354

    Article  CAS  Google Scholar 

  6. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Prog Polym Sci 38:63–235

    Article  CAS  Google Scholar 

  7. Krishnan R, Srinivasan KSV (2004) Macromolecules 37:3614–3622

    Article  CAS  Google Scholar 

  8. Liu X, Zhang G, Li B, Bai Y, Pan D, Li Y (2008) Eur Polym J 44:1200–1208

    Article  CAS  Google Scholar 

  9. Tonnar J, Pouget E, Lacroix-Desmazes P, Boutevin B (2008) Eur Polym J 44:318–328

    Article  CAS  Google Scholar 

  10. Gaynor SG, Wang JS, Matyjaszewski K (1995) Macromolecules 28:8051–8056

    Article  CAS  Google Scholar 

  11. Matyjaszewski K, Gaynor S, Wang JS (1995) Macromolecules 28:2093–2095

    Article  CAS  Google Scholar 

  12. Borkar S, Sen A (2005) J Polym Sci, Part A: Polym Chem 43:3728–3736

    Article  CAS  Google Scholar 

  13. Gu J, Yan X, Fu Z, Yang W, Shi Y (2013) J Appl Polym Sci 128:2291–2296

    Article  CAS  Google Scholar 

  14. Li B, Shi Y, Zhu W, Fu Z, Yang W (2006) Polym J 38:387–394

    Article  CAS  Google Scholar 

  15. Li B, Shi Y, Fu Z, Yang W, Jiao S (2007) Chin J Polym Sci 25:609–619

    Article  Google Scholar 

  16. Pyun J, Matyjaszewski K (2001) Chem Mater 13:3436–3448

    Article  CAS  Google Scholar 

  17. You Y, Hong C, Bai R, Pan C, Wang J (2002) Macromol Chem Phys 203:477–483

    Article  CAS  Google Scholar 

  18. Ran R, Yu Y, Wan T (2007) J Appl Polym Sci 105:398–404

    Article  CAS  Google Scholar 

  19. Zhou G, Ma Y (2008) Chem Lett 37:850–851

    Article  CAS  Google Scholar 

  20. Quinn JF, Barner L, Rizzardo E, Davis TP (2002) J Polym Sci, Part A: Polym Chem 40:19–25

    Article  CAS  Google Scholar 

  21. Chen G, Zhu X, Zhu J, Cheng Z (2004) Macromol Rapid Commun 25:818–824

    Article  CAS  Google Scholar 

  22. Nabifar A, McManus NT, Vivaldo-Lima E, Lona LMF, Penlidis A (2009) Chem Eng Sci 64:304–312

    Article  CAS  Google Scholar 

  23. Zhang Z, Zhu X, Zhu J, Cheng Z, Zhu S (2006) J Polym Sci, Part A: Polym Chem 44:3343–3354

    Article  CAS  Google Scholar 

  24. Simionescu BC, Natansohn A, Simionescu CI (1980) Polym Bull 2:809–815

    CAS  Google Scholar 

  25. Simionescu CI, Simionescu BC (1984) Pure Appl Chem 56:427–438

    Article  CAS  Google Scholar 

  26. Johnson DR, Osada Y, Bell AT, Shen M (1981) Macromolecules 14:118–124

    Article  CAS  Google Scholar 

  27. Osada Y, Mizumoto A (1985) Macromolecules 18:302–304

    Article  CAS  Google Scholar 

  28. Osada Y, Takase M, Iriyama Y (1983) Polym J 15:81–86

    Article  CAS  Google Scholar 

  29. Kuzuya M, Kamiya K, Kawaguchi T, Okuda T (1983) J Polym Sci: Polym Lett Ed 21:509–514

    CAS  Google Scholar 

  30. Huang J, Wang X, Chen X, Yu X (2003) J Appl Polym Sci 89:3180–3187

    Article  CAS  Google Scholar 

  31. Simionescu CI, Simionescu B, Leanca M, Ananiescu C (1981) Polym Bull 5:61–66

    Article  CAS  Google Scholar 

  32. Osada Y, Iriyama Y (1982) J Am Chem Soc 104:2925–2926

    Article  CAS  Google Scholar 

  33. Yin S, Ren L, Wang Y (2013) Plasma Sci Technol 15:1041–1046

    Article  CAS  Google Scholar 

  34. Lee YM, Shim JK (1997) Polymer 38:1227–1232

    Article  CAS  Google Scholar 

  35. Yamaguchi T, Nakao SI, Kimura S (1996) J Polym Sci Polym Chem 34:1203–1208

    Article  CAS  Google Scholar 

  36. Wavhal DS, Fisher ER (2002) J Membr Sci 209:255–269

    Article  CAS  Google Scholar 

  37. Paul CW, Bell AT, Soong DS (1985) Macromolecules 18:2318–2321

    Article  CAS  Google Scholar 

  38. Yoshikawa C, Goto A, Tsujii Y, Fukuda T, Yamamoto K, Kishida A (2005) Macromolecules 38:4604–4610

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2009CB623404) and the National Natural Science Foundation of China (20476045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Zhou, Y., Lu, X. et al. Plasma-Initiated DT Graft Polymerization of Acrylic Acid on Surface of Porous Polypropylene Membrane for Pore Size Control. Plasma Chem Plasma Process 34, 1257–1269 (2014). https://doi.org/10.1007/s11090-014-9572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9572-y

Keywords

Navigation