Skip to main content

Advertisement

Log in

Plasma Chemical and Electrical Modeling of a Dielectric Barrier Discharge in Kr–Cl2 Gas Mixtures

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper reports the study of the Kr–Cl2 plasma chemistry in terms of the homogenous model of a dielectric barrier discharge and for two kinds of the applied voltage excitation shape. The effect of Cl2 concentration in the gas mixture, as well as gas pressure and power frequency on the discharge efficiency and the 222 nm photon generation, under typical experimental operating conditions, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to ultraviolet emission in the lamp is in the range of 4.4–12 %, and it will be very affected at high chlorine percentage (>1 %) and high gas pressure (>200 Torr). A comparison between the sinusoidal and the burst excitation waveforms reveals that the burst excitation method provides an enhanced light source performance compared to the sinusoidal wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eliasson B, Kogelschatz U (1988) Appl Phys B 46:299

    Article  Google Scholar 

  2. Kogelschatz U, Eliasson B, Egli W (1997) J Phys IV 7:C4

    Google Scholar 

  3. Mildren RP, Carman RJ (2001) J Phys D Appl Phys 34:L1

    Article  CAS  Google Scholar 

  4. Carman RJ, Mildren RP, Ward BK, Kane DM (2004) J Phys D Appl Phys 37:2399

    Article  CAS  Google Scholar 

  5. Oda A, Sugawara H, Sakai Y, Akashi K (2000) J Phys D Appl Phys 33:1507

    Article  CAS  Google Scholar 

  6. Bogdanov EA, Kudryavtsev AA, Arslanbekov RP, Kolobov VI (2004) J Phys D Appl Phys 37:2987

    Article  CAS  Google Scholar 

  7. Kolts JH, Setser DW (1978) J Chem Phys 68:4848

    Article  CAS  Google Scholar 

  8. Eliasson B, Kogelschatz U (1991) IEEE Trans Plasma Sci 19:309

    Article  Google Scholar 

  9. Zhang JY, Boyd IW (1996) J Appl Phys 80:633

    Article  CAS  Google Scholar 

  10. Boichenko AM, Skakun VS, Sosnin EA, Tarasenko VF, Yakovlenko SI (2000) Laser Phys 10:540

    CAS  Google Scholar 

  11. Vollkommer F, Hitzschke L (1998) Dielectric barrier discharge. In: Babucke G (ed) Proceedings of the 8th international symposium on the science and technology of light sources (LS-8) (Greifswald, Germany). (Greifswald: Inst. Low Temp. Plasma Phys.), pp 51–60

  12. Zvereva GV, Gerasimov GN (2001) Opt Spektrosk 90:376 [(2001) Opt. Spectrosc. 90: 321]

    Google Scholar 

  13. Lomaev MI, Tarasenko VF, Shitts DV (2002) Tech Phys Lett 28:33

    Article  CAS  Google Scholar 

  14. Boichenko M, Lomaev MI, Tarasenko VF (2008) Laser Phys 18:738

    Article  CAS  Google Scholar 

  15. Yokotani A, Takezoe N, Kurosawa K, Igarashi T, Matsuno H (1996) Appl Phys Lett 69:1399

    Article  CAS  Google Scholar 

  16. Braun AM, Maurette MT, Oliveros E (1991) Photochemical Technology. John Wiley, New York

    Google Scholar 

  17. Scheir RF, Fencl BF (1996) Heat Pip Air Cond J 68:109

    Google Scholar 

  18. Elliott DJ (1986) Microlithography: process technology for IC fabrication. McGraw-Hill, New York

    Google Scholar 

  19. Collier D, Pantley W (1998) Laser Focus World 34:63

    CAS  Google Scholar 

  20. Scheytt H, Esrom H, Prager L, Mehnert R, Von Sonntag C (1993) In: Penetrante BM, Schulthesis SE (eds) Non-thermal plasma techniques for pollution control: part B: electron beam and electrical discharge processing. Springer, Heidelberg, pp 91–102

    Chapter  Google Scholar 

  21. Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671

    Article  CAS  Google Scholar 

  22. Sosnin EA, Oppenländer T, Tarasenko VF (2006) J Photochem Photobiol C 7:145

    Article  CAS  Google Scholar 

  23. Guivan NN, Janca J, Brablec A, Stahel P, Slavicek P, Shimon LL (2005) J Phys D Appl Phys 38:3188

    Article  CAS  Google Scholar 

  24. Xu X (2001) Thin Solid Films 390:237

    Article  CAS  Google Scholar 

  25. Boeuf JP (2003) J Phys D Appl Phys 36:R53

    Article  CAS  Google Scholar 

  26. Yu H, Xiu ZL, Ren CS, Zhang JL, Wang DZ, Wang YN, Ma TS (2005) IEEE Trans Plasma Sci 33:1405

    Article  CAS  Google Scholar 

  27. Erofeev MV, Tarasenko VF (2006) J Phys D Appl Phys 39:3609

    Article  CAS  Google Scholar 

  28. Avdeev SM, Boichenko AM, Sosnin EA, Tarasenko VF, Yakovlenko SI (2007) Laser Phys 17:1119

    Article  CAS  Google Scholar 

  29. Zhang JY, Boyd IW (1998) J Appl Phys 84:1174

    Article  CAS  Google Scholar 

  30. Falkenstein Z, Coogan JJ (1997) J Phys D Appl Phys 30:2704

    Article  CAS  Google Scholar 

  31. Merbahi N, Sewraj N, Marchal F, Salamero Y, Millet P (2004) J Phys D Appl Phys 37:1664

    Article  CAS  Google Scholar 

  32. Zhang JY, Boyd IW (2000) Appl Surf Sci 168:296

    Article  CAS  Google Scholar 

  33. Beleznai Sz, Mihajlik G, Agod A, Maros I, Juhasz R, Némith Zs, Jakab L, Richter P (2006) J Phys D Appl Phys 39:3777

    Article  CAS  Google Scholar 

  34. Oda A, Sakai Y, Akashi H, Sugawara H (1999) J Phys D Appl Phys 32:2726

    Article  CAS  Google Scholar 

  35. Liu S, Neiger M (2003) J Phys D Appl Phys 36:3144

    Article  CAS  Google Scholar 

  36. Carman RJ, Mildren RP (2003) J Phys D Appl Phys 36:19

    Article  CAS  Google Scholar 

  37. Carman RJ, Mildren RP (2002) IEEE Trans Plasma Sci 30:154

    Article  CAS  Google Scholar 

  38. Shiga T, Pitchford LC, Boeuf JP, Mikoshiba S (2003) J Phys D Appl Phys 36:512

    Article  CAS  Google Scholar 

  39. Beleznai Sz, Mihajlik G, Maros I, Balázs L, Richter P (2010) J Phys D Appl Phys 43:015203

    Article  Google Scholar 

  40. Bogdanov EA, Kudryavtsev AA, Arslanbekov RR (2006) Contrib Plasma Phys 46:807

    Article  CAS  Google Scholar 

  41. Belasri A, Khodja K, Bendella S, Harrache Z (2010) J Phys D Appl Phys 43:445202

    Article  Google Scholar 

  42. Zvereva GN (2003) Opt Spectrosc 94:191

    Article  CAS  Google Scholar 

  43. Bussiahn R, Pipa AV, Kindel E (2010) Contrib Plasma Phys 50:182

    Article  CAS  Google Scholar 

  44. Bollanti S, Clementi G, Di Lazzaro P, Flora F, Giordano G, Letardi T, Muzzi F, Shina G, Zheng ZE (1999) IEEE Trans Plasma Sci 27:211

    Article  CAS  Google Scholar 

  45. Beleznai Sz, Mihajlik G, Maros I, Balázs L, Richter P (2008) J Phys D Appl Phys 41:115202

    Article  Google Scholar 

  46. Belasri A, Harrache Z (2010) Phys Plasmas 17:123501

    Article  Google Scholar 

  47. Belasri A, Harrache Z (2011) Plasma Chem Plasma Process 31:787

    Article  CAS  Google Scholar 

  48. Oppenländer T (2003) Photochemical purification of water and air. Wiley-VCH, Weinheim

    Google Scholar 

  49. Zhuang X, Han Q, Zhang H, Feng X, Roth M, Rosier O, Zhu S, Zhang S (2010) J Phys D Appl Phys 43:205202

    Article  Google Scholar 

  50. Erofeev MV, Schitz DV, Skakun VS, Sosnin EA, Tarasenko VF (2010) Phys Scr 82:045403

    Article  Google Scholar 

  51. Boichenko AM, Yakovlenko SI (2004) Laser Phys 14:1

    CAS  Google Scholar 

  52. Panchenko AN, Tarasenko VF (2008) Quantum Electron 38:88

    Article  CAS  Google Scholar 

  53. Lomaev MI, Tarasenko VF, Tkachev AN, Shitts DV, Yakovlenko SI (2004) Tech Phys 49:790

    Article  CAS  Google Scholar 

  54. Tarasenko VF (2002) Pure Appl Chem 74:465

    Article  CAS  Google Scholar 

  55. Boichenko AM, Skakun VS, Sosnin EA, Tarasenko VF, Yakovlenko SI (2000) Laser Phys 10:540

    CAS  Google Scholar 

  56. Feng X, Zhu S (2006) Phys Scr 74:322

    Article  CAS  Google Scholar 

  57. Erofeev MV, Tarasenko VF (2008) Quantum Electron 38:401

    Article  CAS  Google Scholar 

  58. Code Bolsig, the siglo series of discharge modeling software, 1996 by Kinema Software: http://www.siglo-kinema.com

  59. Lück H, Loffhagen D, Bötticher W (1994) Appl Phys B 58:123

    Article  Google Scholar 

  60. Avtaeva SV, Avdeev SM, Sosnin EA (2010) Plasma Phys Rep 36:719

    Article  CAS  Google Scholar 

  61. Lamrous O, Gaouar A, Yousfi M (1996) J Appl Phys 79:6775

    Article  CAS  Google Scholar 

  62. Zvereva GN (2010) Opt Spectrosc 108:4

    Article  CAS  Google Scholar 

  63. Gerasimov GN, Zvereva GN (1997) J Opt Technol 64:15

    Google Scholar 

  64. Boichenko AM, Tarasenko VF, Yakovlenko SI (2000) Laser Phys 10:1159

    CAS  Google Scholar 

  65. Casper LC (2007) On the operation of a long-pulse KrCl excimer laser, PhD Thesis. University of Twente, The Netherlands

  66. Zuev VS, Kanaev AV, Mikheev LD (1984) Sov J Quantum Electron 14:135

    Article  Google Scholar 

  67. Efremov AM, Svettsov VI, Sitanov DV (2008) High Temp 46:11

    Article  CAS  Google Scholar 

  68. Eckstrom DJ, Nakano HH, Lorents DC, Rothem T, Betts JA, Lainhart ME, Triebes KJ, Dakin DA (1988) J Appl Phys 64:1691

    Article  CAS  Google Scholar 

  69. Avtaeva SV, Kulumbaev EB, Skornyakov AV (2008) One-dimensional drift-diffusion model of the Kr dielectric barrier discharge. In: 15th SHCE proceedings pinches, plasma focus and capillary discharge, Russia, pp 248–251

  70. Castex C, le Calvé J, Haaks D, Jordan B, Zimmerer G (1980) Chem Phys Lett 70:106

    Article  CAS  Google Scholar 

  71. Kannari F, Kimura WD, Ewing JJ (1990) J Appl Phys 68:2615

    Article  CAS  Google Scholar 

  72. Xu X (2000) Dynamics of high and low pressure plasma remediation, PhD Thesis. University of Illinois at Urbana-Champaign

  73. Boichenko AM, Skakum VS, Sosnin EA, Tarasenko VF (1996) Quantum Electron 26:336

    Article  Google Scholar 

  74. Durrett MJ (1984) Excited state kinetics in High pressure gas mixtures of krypton and chlorine and in krypton and xenon, PhD Thesis. Rice University

  75. Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Acknowledgments

This work has been supported by Agence Nationale pour le Développement de la Recherche Universitaire (Algeria) in the frame of project PNR (Ref. 13/0/91).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Harrache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belasri, A., Larbi Daho Bachir, N. & Harrache, Z. Plasma Chemical and Electrical Modeling of a Dielectric Barrier Discharge in Kr–Cl2 Gas Mixtures. Plasma Chem Plasma Process 33, 131–146 (2013). https://doi.org/10.1007/s11090-012-9416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9416-6

Keywords

Navigation