Skip to main content
Log in

Adsorption of Acid Orange II from Aqueous Solution by Plasma Modified Activated Carbon Fibers

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

As a main composition of dye wastewater, organic pollutant which has a negative effect on the environment can be effectively removed by active carbon adsorption. In the present work, activated carbon fiber (ACF) was modified by a novel modification technology, gilding arc discharge, while its adsorption capacity was studied with the acid orange II (AO II) solution selected as the target wastewater. Several factors, such as air flow rate, distance between samples and the discharge area, pH of the solution and plasma treating time, were investigated with respect to their effects on properties of the plasma-treated ACF, in terms of texture characteristic, surface chemical compositions and adsorption capacities. The results showed that the specific surface area and pore volume of ACF decreased after the plasma treatment, while the amounts of oxygen-containing functional groups on the surface of ACF increased compared with the raw ACF. Moreover, it was observed that the adsorption capacity of the modified ACF was improved by nearly 20.9 %, which was beneficial to the industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang L, Li F (2010) Electrochim Acta 55:6695–6702

    Article  CAS  Google Scholar 

  2. Shafiei M, Alpas AT (2011) J Power Sour 196:7771–7778

    Article  CAS  Google Scholar 

  3. Xu B, Lu Y (2006) J Raman Spectrosc 37:1423–1426

    Article  CAS  Google Scholar 

  4. Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS (2003) Carbon 41:1941–1947

    Article  CAS  Google Scholar 

  5. Moghaddam RB, Pickup PG (2011) Electrochim Acta 56:7666–7672

    Article  CAS  Google Scholar 

  6. Ueshima M, Toda E, Nakajima Y, Sugiyama K (2010) Jpn J Appl Phys 49: 08JA03-08JA03-6

  7. Kopec KK, Dutczak SM, Wessling M, Stamatialis DF (2011) J Membr Sci 369:308–318

    Article  CAS  Google Scholar 

  8. Park SJ, Kim BJ (2004) J Colloid Interface Sci 275:590–595

    Article  CAS  Google Scholar 

  9. Li XJ, Qiao GJ, Chen JR (2008) Rare Metal Mat Eng 37:296–299

    Google Scholar 

  10. Li H, Liang H, He F, Huang Y, Wan YZ (2009) Surf Coat Technol 203:1317–1321

    Article  CAS  Google Scholar 

  11. Choudhury AJ, Chutia J, Barve SA, Kakati H, Pal AR, Mithal N, Kishore R, Pandey M, Patil DS (2011) Prog Org Coat 70:75–82

    Article  CAS  Google Scholar 

  12. Joshi R, Schulze RD, Meyer-Plath A, Wagner MH, Friedrich JF (2009) Plasma Process Polym 6:S218–S222

    Article  CAS  Google Scholar 

  13. Yang KS, Yoon YJ, Lee MS, Lee WJ, Kim JH (2002) Carbon 40:897–903

    Article  CAS  Google Scholar 

  14. Lesueur H, Czernichowski A (1988) French patent no. 2639172

  15. Czernichowski A (1994) Pure Appl Chem 66:1301–1310

    Article  CAS  Google Scholar 

  16. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1999) Prog Energy Combust Sci 25:211–231

    Article  CAS  Google Scholar 

  17. Du CM, Wang J, Zhang L, Li HX, Liu H, Xiong Y (2012) New J Phys 14:1–16

    Google Scholar 

  18. Du CM, Li HX, Zhang L, Wang J, Huang DW, Xiao MD, Cai JW, C YB, Y HL, Xiong Ya, Xiong Yi (2012) Jnt J Hydrogen Energ 37:8318–8329

  19. Liu H, Du CM, Wang J, Li HX, Zhang L, Zhang LL (2012) Plasma Process Polym 9:285–297

    Article  Google Scholar 

  20. Du CM, Shi TH, Sun YW, Zhuang XF (2008) J Hazard Mater 154:1192–1197

    Article  CAS  Google Scholar 

  21. Du CM, Yan JH, Cheron BG (2007) Plasma Sour Sci Technol 16:791–797

    Article  CAS  Google Scholar 

  22. Bellakhal N, Dachraoui M (2003) Mater Chem Phys 82:484–488

    Article  CAS  Google Scholar 

  23. Benstaali B, Addou A, Brisset JL (2003) Mater Chem Phys 78:214–221

    Article  Google Scholar 

  24. Depenyou F, Doubla A, Laminsi S, Moussa D, Brisset JL, Le Breton JM (2008) Corros Sci 50:1422–1432

    Article  CAS  Google Scholar 

  25. Kusano Y, Norrman K, Drews J, Leipold F, Singh SV, Morgen P, Bardenshtein A, Krebs N (2011) Surf Coat Technol 205:S490–S494

    Article  CAS  Google Scholar 

  26. Penkov OV, Lee HJ, Plaksin VY, Mansur R, Kim JH (2010) Thin Solid Films 518:6160–6162

    Article  CAS  Google Scholar 

  27. Shiki H, Motoki J, Ito Y, Takikawa H, Ootsuka T, Okawa T, Yamanaka S, Usuki E, Nishimura Y, Hishida S, Sakakibara T (2008) Thin Solid Films 516:3684–3689

    Article  CAS  Google Scholar 

  28. Kusano Y, Teodoru S, Leipold F, Andersen TL, Sorensen BF, Rozlosnik N, Michelsen PK (2008) Surf Coat Technol 202:5579–5582

    Article  CAS  Google Scholar 

  29. Abdelmalek F, Torres RA, Combet E, Petrier C, Pulgarin C, Addou A (2008) Sep Purif Technol 63:30–37

    Article  CAS  Google Scholar 

  30. Lee DS (2005) Surf Coat Technol 200:2277–2282

    Article  CAS  Google Scholar 

  31. Sidheswaran MA, Destaillats H, Sullivan DP, Cohn S, Fisk WJ (2012) Build Environ 47(2012):357–367

    Article  Google Scholar 

  32. Su CI, Peng CC, Lee CY (2011) Text Res J 81:730–737

    Article  CAS  Google Scholar 

  33. Korovchenko P, Renken A, Kiwi-Minsker L (2005) Catal Today 102:133–141

    Article  Google Scholar 

  34. Mo DQ, Ye DQ (2009) Surf Coat Technol 203:1154–1160

    Article  CAS  Google Scholar 

  35. Qu GZ, Li J, Wu Y, Li GF, Li D (2009) Chem Eng J 146:168–173

    Article  CAS  Google Scholar 

  36. Mathew T, Datta RN, Dierkes WK, Noordermeer JWM, van Ooij WJ (2008) Plasma Chem Plasma Process 28:273–287

    Article  CAS  Google Scholar 

  37. Zielinski T, Kijenski J (2005) Compos A 36:467–471

    Article  Google Scholar 

  38. Tang S, Lu N, Wang JK, Ryu SK, Choi HS (2007) J Phys Chem C 111:1820–1829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project is supported by the National Nature Science Foundation (50908237), Science and technology new star in Zhu Jiang Guangzhou city, Fundamental Research Funds for the Central Universities (09lgpy21), Specialized Research Fund for Doctoral Program of Higher Education of China (200805581036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du ChangMing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ChangMing, D., DongWei, H., HongXia, L. et al. Adsorption of Acid Orange II from Aqueous Solution by Plasma Modified Activated Carbon Fibers. Plasma Chem Plasma Process 33, 65–82 (2013). https://doi.org/10.1007/s11090-012-9412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9412-x

Keywords

Navigation