Skip to main content
Log in

Phase Transformations in Pt-Aluminide Coatings and Their Effect on Oxidation Resistance

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Diffusion coatings have been widely used as metallic bond coatings in thermal barrier systems to protect aeronautical turbine blades from detrimental oxidation and hot corrosion. A cooling scheme is one of most effective methods to protect a material surface exposed to a high temperature environment. However, fast cooling rate will not only generate thermal damages by high thermal stresses, but also affect the structure of coatings. An experimental program was undertaken to study the effects of cooling rates on the microstructure of Pt-aluminide coatings after diffusion treatment at high temperatures followed by furnace-cooling and water-quenching treatments. In order to further study the effects of the phase transformation on coatings, the Al-deposited coatings were prepared by the pack cementation process to increase the Al content in Pt-aluminide coatings and the microstructures of these coatings were also investigated. The composition (in wt%) of the packs was xAl-2NH4Cl-(98 − x)Al2O3 with different Al levels (x = 1, 4 and 6) and the Pt-aluminide coatings were transformed to ε-PtAl, ξ-PtAl2 or γ′-(Ni, Pt)3Al after Al deposition. Isothermal oxidation tests were performed in air at 1000 °C for up to 100 h. These oxidation tests indicated that parabolic scaling kinetics were established and that the coating formed in the packs containing 1 wt% Al exhibited slower scale growth rate. After oxidation, the oxidation scales, Al2O3 or Cr2O3, were formed above the coatings. The mechanisms of phase transformations in Pt-aluminide coatings after furnace-cooling and water-quenching treatments are discussed. In addition, the effects of these phase transformations on the oxidation resistance of the coatings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. A. Marino and E. A. Carter, Acta Materialia 58, 2726 (2010).

    Article  Google Scholar 

  2. C. Leyens, I. G. Wright and B. A. Pint, Oxidation of Metals 54, 401 (2000).

    Article  Google Scholar 

  3. K. Y. Kim, S. Shin, D. H. Lee and H. H. Cho, International Journal of Heat Mass and Transfer 54, 5192 (2011).

    Article  Google Scholar 

  4. B. Gleeson, Journal of Propulsion Power 22, 375 (2006).

    Article  Google Scholar 

  5. A. V. Put, D. Oquab, E. Pere, A. Raffaitin and D. Monceau, Oxidation of Metals 75, 247 (2011).

    Article  Google Scholar 

  6. N. P. Padture, M. Gell and E. H. Jordan, Science 296, 280 (2002).

    Article  Google Scholar 

  7. I. Spitsberg and K. More, Materials Science and Engineering A 417, 322 (2006).

    Article  Google Scholar 

  8. J. A. Haynes, B. A. Pint, K. L. More, Y. Zhang and I. G. Wright, Oxidation of Metals 58, 513 (2002).

    Article  Google Scholar 

  9. D. R. Mumm, A. G. Evans and I. T. Spitsberg, Acta Materialia 49, 2329 (2001).

    Article  Google Scholar 

  10. B. Gleeson, W. Wang, S. Hayashi and D. Sordelet, Materials Science Forum 461–464, 213 (2004).

    Article  Google Scholar 

  11. B. Gleeson, B. Li, D. Sordelet and W.J. Brindley, US Patent No. 2006127695 (2006).

  12. C. Jiang and B. Gleeson, Acta Materialia 55, 1641 (2007).

    Article  Google Scholar 

  13. T. Izumi, N. Mu, L. Zhang and B. Gleeson, Surface and Coatings Technology 202, 628 (2007).

    Article  Google Scholar 

  14. S. Sundaram, C. A. Johnson, D. M. Lipkin and J. W. Hutchinson, Journal of Applied Mechanics 80, 001002 (2013).

    Google Scholar 

  15. R. W. Jackson and M. R. Begley, International Journal of Solids and Structures 51, 1364 (2014).

    Article  Google Scholar 

  16. V. K. Tolpygo, J. R. Dryden and D. R. Clarke, Acta Materialia 46, 927 (1998).

    Article  Google Scholar 

  17. K. Baduragergen and H. E. Schaefer, Physical Review B 56, 3032 (1997).

    Article  Google Scholar 

  18. C. E. Dahmnai, M. C. Cadeville, J. M. Sanchez and J. I. Moranlopez, Physical Review Letters 55, 1208 (1985).

    Article  Google Scholar 

  19. C. Jiang, D. J. Sordelet and B. Gleeson, Physical Review B 72, 184203 (2005).

    Article  Google Scholar 

  20. C. L. Fu and G. S. Painter, Acta Materialia 45, 481 (1997).

    Article  Google Scholar 

  21. P. Perez, P. Gonzalez, G. Garces, G. Caruana and P. Adeva, Journal of Alloys and Compounds 302, 137 (2000).

    Article  Google Scholar 

  22. S. V. Raju, A. A. Oni, B. K. Godwai, J. Yan, V. Drozd, S. Srinivasan, J. M. LeBeau, K. Rajan and S. K. Saxena, Journal of Alloys and Compounds 619, 616 (2015).

    Article  Google Scholar 

  23. S. Ochiai, Y. Oya and T. Suzuki, Acta Metallurgical 32, 289 (1984).

    Article  Google Scholar 

  24. Y. L. Lu, D. W. Jia, T. T. Hu, Z. Chen and L. C. Zhang, Superlattices and Microstructures 66, 105 (2014).

    Article  Google Scholar 

  25. C. Jiang, D. J. Sordelet and B. Gleeson, Acta Materialia 54, 1147 (2006).

    Article  Google Scholar 

  26. M. Chaudhari, J. Tiley, R. Banerjee and J. Du, Materials Science and Engineering A 21, 055006 (2013).

    Google Scholar 

  27. J. A. Nesbitt and R. W. Heckel, Metallurgical and Materials Transactions A 18, 2075 (1987).

    Article  Google Scholar 

  28. S. Hayashi, W. Wang, D. J. Sordelet and B. Gleeson, Metallurgical and Materials Transactions A 36, 1769 (2005).

    Article  Google Scholar 

  29. Z. Y. Liu and W. Gao, Oxidation of Metals 55, 481 (2001).

    Article  Google Scholar 

  30. S. C. Choi, H. J. Cho and D. B. Lee, Oxidation of Metals 46, 109 (1999).

    Article  Google Scholar 

  31. Z. Y. Liu and W. Gao, Oxidation of Metals 55, 481 (2001).

    Article  Google Scholar 

  32. Y. Y. Xing, B. Dai, X. H. Wei, Y. J. Ma and M. Wang, Vacuum 107, 101 (2014).

    Google Scholar 

  33. I. A. Kvernes and P. Kofstad, Metallurgical and Materials Transactions B 3, 1511 (1972).

    Google Scholar 

  34. D. B. Lee and M. L. Santella, Materials Science and Engineering A 374, 217 (2004).

    Article  Google Scholar 

  35. C. T. Liu and V. K. Sikka, Journal of Metals 38, 19 (1986).

    Google Scholar 

  36. S. W. Guan and W. W. Smeltzer, Oxidation of Metals 42, 375 (1994).

    Google Scholar 

  37. J.A. Haynes, B.A. Pint, Y. Zhang and I.G. Wright, Surface and Coatings Technology 203, 413 (2008).

  38. S. Hayashi, T. Natira and B. Gleeson, Materials Science Forum 522–523, 229 (2005).

    Google Scholar 

  39. V. Deodeshmukh and B. Gleeson, Surface and Coatings Technology 202, 643 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 51271107, the Shanghai Committee of Science and technology, China under Grant Nos. 10JC1405100 and 11520701200, and the Innovation Program of Shanghai Municipal Education Commission under Grant No. 13ZZ077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Wang, S.Q., Kong, W.K. et al. Phase Transformations in Pt-Aluminide Coatings and Their Effect on Oxidation Resistance. Oxid Met 84, 151–167 (2015). https://doi.org/10.1007/s11085-015-9548-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9548-1

Keywords

Navigation