Skip to main content
Log in

Oxidation and Electrical Behavior of Mn-Co-Coated Crofer 22 APU Steel Produced by a Pack Cementation Method for SOFC Interconnect Applications

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An issue associated with chromia-scale formation on ferritic stainless steels is an associated increase in electrical resistance over time, due to the oxide growth. Further, the migration of chromium via chromia-scale evaporation into solid oxide fuel cell (SOFC) cathodes can result in degradation in cell electrochemical performance. In this research, manganese and cobalt were deposited by the pack cementation method onto Crofer 22 APU ferritic stainless steel. Isothermal and cyclic oxidation was carried out to evaluate the role of coating materials during oxidation. Area-specific resistance (ASR) of the Mn–Co-coated substrates was also tested at 800 °C. The results demonstrate that the coating layer transforms to MnCo2O4, CoFe2O4, CoCr2O4, and Co3O4 spinels during oxidation. This scale is protective, and acts as an effective barrier against chromium migration into the outer oxide. Mn–Co oxide and cobalt oxides also cause a reduction in ASR, in comparison to that of bare steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Horita, Y. Xiong, K. Yamaji, N. Sakai and H. Yokokawa, Stability of Fe–Cr alloy interconnects under CH4–H2O atmosphere for SOFCs. Journal of Power Sources 118, 35–43 (2003).

    Article  Google Scholar 

  2. J. W. Fergus, Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering A 397, 271–283 (2005).

    Article  Google Scholar 

  3. C. Lee and J. Bae, Oxidation-resistant thin film coating on ferritic stainless steel by sputtering for solid oxide fuel cells. Thin Solid Films. 516, 6432–6437 (2008).

    Article  Google Scholar 

  4. X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco and L. C. De Jonghe, Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties. Solid State Ionics 176, 425–433 (2005).

    Article  Google Scholar 

  5. Z. Yang, G. G. Xia, S. P. Simner and J. W. Stevenson, Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. Journal of the Electrochemical Society 152, 1896–1901 (2005).

    Article  Google Scholar 

  6. N. Laosiripojana and S. Assabumrungrat, Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: the possible use of these fuels in internal reforming SOFC. Journal of Power Sources 163, 943–951 (2007).

    Article  Google Scholar 

  7. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Metallic interconnectors for solid oxide fuel cells- A review. Materials at High Temperatures. 20, 115–127 (2003).

    Google Scholar 

  8. W. Z. Zhu and S. C. Deevi, Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering A. 384, 227–243 (2003).

    Article  Google Scholar 

  9. Z. Yang, G. Xia, G. Maupin and J. Stevenson, Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications. Surface & Coatings Technology 201, 4476–4483 (2006).

    Article  Google Scholar 

  10. P. Huczkowski, N. Christiansen, V. Shemet, J. P. Abellan, L. Singheiser and W. J. Quadakkers, Oxidation induced lifetime limits of chromia forming ferritic interconnector steels. Journal of Fuel Cell Science and Technology. 1, 30–34 (2004).

    Article  Google Scholar 

  11. H. Kurokawa, C. P. Jacobson, L. C. DeJonghe and S. J. Visco, Chromium vaporization of bare and of coated iron-chromium alloys at 1073 K. Solid State Ionics. 178, 287–296 (2007).

    Article  Google Scholar 

  12. S. Lee, J. Hong, H. Kim, J. W. Son, J. H. Lee, B. K. Kim, H. W. Lee and K. J. Yoonz, Highly Dense Mn–Co Spinel Coating for Protection of Metallic Interconnect of Solid Oxide Fuel Cells. Journal of the Electrochemical Society 161, F1389–F1394 (2014).

    Article  Google Scholar 

  13. Z. Yang, G. Xia, X. Li and J. W. Stevenson, (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy 32, 3648–3654 (2007).

    Article  Google Scholar 

  14. Z. G. Yang, G. G. Xia, S. P. Simner and J. W. Stevenson, Mn1.5Co1.5O4 Spinel Protection Layers on Ferritic Stainless Steels for SOFC Interconnect Applications, Electrochemical Solid-State. Letters 8, A168–A170 (2005).

    Google Scholar 

  15. W. Wei, W. Chen and D. G. Ivey, Anodic electrodeposition of nanocrystalline coatings in the Mn–Co–O system. Chemistry of Materials. 19, 2816–2822 (2007).

    Article  Google Scholar 

  16. M. R. Bateni, P. Wei, X. Deng and A. Petric, Spinel coatings for UNS 430 stainless steel interconnects. Surface & Coatings Technology 201, 4677–4684 (2007).

    Article  Google Scholar 

  17. P. Wei, X. Deng, M. R. Bateni and A. Petric, Oxidation and electrical conductivity behavior of spinel coatings for metallic interconnects of solid oxide fuel cells. Corrosion. 63, 529–536 (2007).

    Article  Google Scholar 

  18. W. Wei, W. Chen and D. G. Ivey, Oxidation resistance and electrical properties of anodically electrodeposited Mn–Co oxide coatings for solid oxide fuel cell interconnect applications. Journal of Power Sources 186, 428 (2009).

    Article  Google Scholar 

  19. X. Deng, P. Wei, M. R. Bateni and A. Petric, Cobalt plating of high temperature stainless steel interconnects. Journal of Power Sources 160, 1225–1229 (2006).

    Article  Google Scholar 

  20. H. Ebrahimifar and M. Zandrahimi, Mn coating on AISI 430 ferritic stainless steel by pack cementation method for SOFC interconnect applications. Solid State Ionics 183, 71–79 (2011).

    Article  Google Scholar 

  21. H. Ebrahimifar and M. Zandrahimi, Oxidation and electrical behavior of AISI 430 coated with cobalt spinels for SOFC interconnect applications. Surface & Coatings Technology 206, 75–81 (2011).

    Article  Google Scholar 

  22. D. Schmidt and M. Galetz, M. Schu¨ tze, Deposition of Manganese and Cobalt on Ferritic–Martensitic Steels via Pack Cementation Process. Oxidation of Metals 79, 589–599 (2013).

    Article  Google Scholar 

  23. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Metallic interconnectors for solid oxide fuel cells—a review. Materials at High Temperatures 20, 115–127 (2003).

    Google Scholar 

  24. C. Wagner, Types of Reaction in the Oxidation of Alloys. Z. Elektrochem. 63, 772–782 (1959).

    Google Scholar 

  25. G. C. Wood and D. P. Whittle, Chromium Oxide Scale Growth on Iron-Chromium Alloys: i. The Influence of Variables on the Oxidation of Fe-28% Cr. Journal of the Electrochemical Society 115, 126–133 (1968).

    Article  Google Scholar 

  26. L. Chen, E. Y. Sun, J. Yamanis and N. Magdefrau, Oxidation Kineticsof Mn1.5Co1.5O4-Coated Haynes 230 and Crofer 22 APU for Solid Oxide Fuel Cell Interconnects. Journal of the Electrochemical Society 157, B931–B942 (2010).

    Article  Google Scholar 

  27. B. Hua, J. Pu, W. Gong, J. F. Zhang, F. S. Lu and L. Jian, Cyclic Oxidation of Mn–Co Spinel Coated SUS 430 Alloy in the Cathodic Atmosphere of Solid Oxide Fuel Cells. Journal of Power Sources 185, (1), 419–422 (2008).

    Article  Google Scholar 

  28. N. Shaigan, D. G. Ivey and W. Chen, Oxidation and electrical behavior of nickel/lanthanum chromite-coated stainless steel interconnects. Journal of Power Sources 183, 651–659 (2008).

    Article  Google Scholar 

  29. T. Brylewski, M. Nanko, T. Maruyama and K. Przybylski, Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics 143, 131–150 (2001).

    Article  Google Scholar 

  30. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins and M. Sennour, Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources. 171, 652–662 (2007).

    Article  Google Scholar 

  31. T. Horita, Y. Xiong, K. Yamaji, N. Sakai and H. Yokokawa, Evaluation of Fe-Cr alloys as interconnects for reduced operation temperature SOFCs. Journal of the Electrochemical Society 150, A243–A247 (2003).

    Article  Google Scholar 

  32. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Diffusion of cations in chromia layers grown on iron-base alloys. Oxidation of Metals 37, 81–93 (1992).

    Article  Google Scholar 

  33. M. G. C. Cox, B. Mcenaney and V. D. Scott, Chemical diffusion model for partitioning of transition elements in oxide scales on alloys. Philosophical Magazine 26, 839–851 (1972).

    Article  Google Scholar 

  34. H. Kurokawa, K. Kawamura and T. Maruyama, Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solid State Ionics. 168, 13–21 (2004).

    Article  Google Scholar 

  35. H. Ebrahimifar and M. Zandrahimi, Evaluation of the parabolic rate constant during different types of oxidation tests for spinel coated Fe-17%Cr alloy. Oxidation of Metals 75, 125–141 (2010).

    Article  Google Scholar 

  36. H. Ebrahimifar and M. Zandrahimi, Influence of oxide scale thickness on electrical conductivity of coated AISI 430 steel for use as interconnect in solid oxide fuel cells. Ionics 18, 615–624 (2012).

    Article  Google Scholar 

  37. X. B. Chen, L. Zhang and S. P. Jiang, Chromium deposition and poisoning on (La0.6 Sr0.4-x Bax) (Co0.2 Fe0.8) O3 (0 ≤ x ≤ 0.4) cathodes of solid oxide fuel cells. Journal of the Electrochemical Society 155, B1093–B1101 (2008).

    Article  Google Scholar 

  38. S. P. Jiang and Y. D. Zhen, Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics 179, 1459–1464 (2008).

    Article  Google Scholar 

  39. J. W. Fergus, Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. International Journal of Hydrogen Energy 32, 3664–3671 (2007).

    Article  Google Scholar 

  40. E. Konysheva, J. Mertens, H. Penkalla, L. Singheiser and K. Hilpert, Chromium Poisoning of the Porous Composite Cathode Effect of Cathode Thickness and Current Density. Journal of the Electrochemical Society 154, B1252–B1264 (2007).

    Article  Google Scholar 

  41. K. Ogasawara, H. Kameda, Y. Matsuzaki, T. Sakurai, T. Uehara, A. Toji, N. Sakai, K. Yamaji, T. Horita and H. Yokokawa, Chemical Stability of Ferritic Alloy Interconnect for SOFCs. Journal of the Electrochemical Society 154, B657–B663 (2007).

    Article  Google Scholar 

  42. M. Stanislowski, J. Froitzheim, L. Niewolak, W. J. Quadakkers, K. Hilpert, T. Markus and L. Singheiser, Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings. Journal of Power Sources 164, 578–589 (2007).

    Article  Google Scholar 

  43. H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M. E. Brito, Y. P. Xiong and H. Kishimoto, Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics 177, 3193–3198 (2006).

    Article  Google Scholar 

  44. E. Konysheva, H. Penkalla, E. Wessel, J. Mertens, U. Seeling, L. Singheiser and K. Hilpert, Chromium Poisoning of Perovskite Cathodes by the ODS Alloy Cr5Fe1Y2O3 and the High Chromium Ferritic Steel Crofer22APU. Journal of the Electrochemical Society 153, A765–A773 (2006).

    Article  Google Scholar 

  45. S. C. Paulson and V. I. Birss, Chromium Poisoning of LSM-YSZ SOFC Cathodes I. Detailed Study of the Distribution of Chromium Species at a Porous, Single-Phase Cathode. Journal of the Electrochemical Society 151, A1961–A1968 (2004).

    Article  Google Scholar 

  46. Y. Matsuzaki and I. Yasuda, Dependence of SOFC Cathode Degradation by Chromium-Containing Alloy on Compositions of Electrodes and Electrolytes. Journal of the Electrochemical Society 148, A126–A131 (2001).

    Article  Google Scholar 

  47. Y. Matsuzaki and I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: part I. Dependence on temperature, time, and impurity concentration. Solid State Ionics 132, 271–278 (2000).

    Article  Google Scholar 

  48. M. Stanislowski, E. Wessel, K. Hilpert, T. Markus and L. Singheiser, Chromium vaporization from high-temperature alloys I. outer oxide layers. Journal of the Electrochemical Society 154, (4), A295–A306 (2007).

    Article  Google Scholar 

  49. N. Sakai, T. Horita, K. Yamaji, Y. P. Xiong, H. Kishimoto, M. E. Brito and H. Yokokawa, Material transport and degradation behavior of SOFC interconnects. Solid State Ionics 177, 1933–1939 (2006).

    Article  Google Scholar 

  50. Z. G. Yang, G. G. Xia, P. Singh and J. W. Stevenson, Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells. Journal of Power Sources 155, 246–252 (2006).

    Article  Google Scholar 

  51. J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650 & #xB0;C. Corrosion Science 46, 2301 (2004).

    Article  Google Scholar 

  52. H. Ling, A. Petric, Electrical and Thermal Properties of Spinels, IX International Conference on Solid Oxide Fuel cells IX, (Quebec city, Canada, 2005), p. 1866.

  53. H. Ling, MsC Thesis, High Temperature and Thermal Properties of Transition Metal Spinel Oxides, McMaster University, Canada, August 2004, p. 83.

  54. A. Petric and H. Ling, Electrical conductivity and thermal expansion of spinels at elevated temperatures. Journal of the American Ceramic Society 90, 1515–1520 (2007).

    Article  Google Scholar 

  55. J. L. Gonzalez-Carrasco, P. Perez, P. Adeva and J. Chao, Oxidation behaviour of an ODS NiAl-based intermetallic alloy. Intermetallics. 7, 69–78 (1999).

    Article  Google Scholar 

  56. P.Y. Hou, K. Huang, W.T. Bakker, in Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC VI), eds. S.C. Singhal and M. Dokiya (Honolulu, Hawaii, 1999) p. 737.

  57. N. Shaigan, D. G. Ivey and W. Chen, Metal-oxide scale interfacial imperfections andperformance of stainless steels utilized as interconnects in solid oxide fuel Cells. Journal of the Electrochemical Society 156, B765–B770 (2009).

    Article  Google Scholar 

  58. N. Shaigan, W. Qu, D. G. Ivey and W. Chen, A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources. 195, 1529–1542 (2010).

    Article  Google Scholar 

  59. A. Holta and P. Kofstada, Electrical conductivity and defect structure of Cr2O3. II. Reduced temperatures (<1000 °C). Solid State Ionics. 69, 137–143 (1994).

    Article  Google Scholar 

Download references

Acknowledgments

This research has been conducted with the cooperation of the Iran New Energies Organization. The authors would like to thank this organization for providing research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Zandrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimifar, H., Zandrahimi, M. Oxidation and Electrical Behavior of Mn-Co-Coated Crofer 22 APU Steel Produced by a Pack Cementation Method for SOFC Interconnect Applications. Oxid Met 84, 129–149 (2015). https://doi.org/10.1007/s11085-015-9547-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9547-2

Keywords

Navigation