Skip to main content
Log in

Super-continuum generation of an optical pulse in a silicon micro-ring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The super-continuum (SC) system of an optical pulse within a silicon micro-ring resonator is designed and simulated. A self-phase modulation within the device is a key process for an efficient SC generation, which can be used to create and recover the required maximum output SC peak power signals. The waveguide length is L1 = L3 = 0.15-cm-long, and LR = 15.5 µm, where in the simulation the input peak power of both input and add ports is 50 W, which is a 50 fs pulse width. The coupling coefficients are κ1 = 0.5 and κ2 = 0.9, with the dispersion of ridge waveguide and ring ridge waveguide are D = +32.71 and D = −43.25 ps nm−1 km−1, respectively at λ0 = 1550 nm from, which the broadband SC output signals when the output of −30 dB with spectral width of 470 nm, and the maximum output peak power of 48.3 W are obtained. Moreover, the transition coupling coefficients, κ2 of an add-drop ridge waveguide can be controlled to obtain the maximum output peak power at the trough port outputs, in which the output power is increased from 13 to 48 W with −30 dB output when the spectral width is increased from 453 to be 470 nm. The drop port output power is increased from 1 to 14 W when the spectral width is increased from 342 to 417 nm. From which the input signal is applied only to the input port. The obtained results can be useful for micro-waveguide usage, where the applications of such as broadband and self-pumping light sources, spectroscopy and medical imaging can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal, G.P.: Lightwave Technology: Components and Devices, 1ts edn. Wiley, New York (2004)

    Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  • Ahmed, R., et al.: Optical microring resonator based corrosion sensing. RSC Adv. 6, 56127–56133 (2016a)

    Article  Google Scholar 

  • Ahmed, R., et al.: Mode-multiplexed waveguide sensor. J. Electromagn. Waves Appl. 30(4), 444–455 (2016b)

    Article  Google Scholar 

  • Ahmed, R., et al.: Multimode waveguide based directional coupler. Opt. Commun. 370, 183–191 (2016c)

    Article  ADS  Google Scholar 

  • Ahmed, R.,Ullah, S.M.: Design & analysis on silicon based optical micro-ring resonator sensor device for biomedical applications at μm wavelength. CIOMP-OSA Summer Session: Lasers and their Applications. Optical Society of America, pp. Tu3-1–Tu3-4 (2011)

  • Almeida, V.R., Lipson, M.: Optical bistability on a silicon chip. Opt. Lett. 29(20), 2387–2389 (2004)

    Article  ADS  Google Scholar 

  • Bogaerts, W., et al.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)

    Article  Google Scholar 

  • Boyraz, O., Koonath, P., Raghunathan, V., Jalali, B.: All optical switching and continuum generation in silicon waveguides. J. Opt. Express 12(1), 4094--4102 (2004)

    Article  ADS  Google Scholar 

  • Capmany, J., Fraile-Pelaez, F.J., Muriel, M.A.: Optical bistability and differential amplification in nonlinear fiber resonators. IEEE J. Quantum Electron. 30(11), 2578–2588 (1994)

    Article  ADS  Google Scholar 

  • Claps, R., Dimitropoulos, D., Raghumathan, V., Han, Y., Jalali, B.: Observation of stimulated Raman amplification in silicon waveguides. J. Opt. Express 11(1), 1731--1739 (2003)

    Article  ADS  Google Scholar 

  • Claps, R., Raghunathan, V., Dimitropoulos, D., Jalali, B.: Influence of nonlinear absorption on Raman amplification in Silicon waveguides. J. Opt. Express 12(1), 2774 (2004)

    Article  ADS  Google Scholar 

  • Dimitropoulos, D., Raghunathan, V., Claps, R., Jalali, B.: Phase-matchingand nonlinear optical processes in silicon waveguides. J. Opt. Express 12(1), 149–160 (2004)

    Article  ADS  Google Scholar 

  • Dulkeith, E., Vlasov, Y.A., Chen, X.G., Panoiu, N.C., Osgood Jr., R.M.: Self-phase modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14(12), 5524–5534 (2006)

    Article  ADS  Google Scholar 

  • Edwards, D.F., Ochoa, E.: Infrared refractive index of silicon. J. Appl. Opt. 19(1), 4130–4131 (1980)

    Article  ADS  Google Scholar 

  • Fallahkhair, A.B., Li, K.S., Murphy, T.E.: Vector finite difference modesolver for anisotropic dielectric waveguides. J. Lightwave Technol. 26(11), 1423–1431 (2008)

    Article  ADS  Google Scholar 

  • Foster, M.A., Turner, A.C., Sharping, J.E., Schmidt, B.S., Lipson, M., Gaeta, A.L.: Broad-band optical parametric gain on a silicon photonic chip. J. Nature 441, 960--963 (2006)

    Article  ADS  Google Scholar 

  • Husakou, A., Herrmann, J.: Supercontinuum generation of higherorder solitons by fission in photonic crystal fibers. J. Phys. Rev. Lett. 87, 1–4 (2001)

    Article  Google Scholar 

  • Ibrahim, T.A., Amarnath, K., Kuo, L.C., Grover, R., Van, V., Ho, P.T.: Photonic logic NOR gate based on two symmetric microring resonators. Opt. Lett. 29(23), 2779–2781 (2004)

    Article  ADS  Google Scholar 

  • Ibrahim, T.A., Grover, R., Kuo, L.C., Kanakaraju, S., Calhoun, L.C., Ho, P.-P.: All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photon. Technol. Lett. 15(10), 1422–1424 (2003)

    Article  ADS  Google Scholar 

  • Karim, M.R., Rahman, B.M.A., Agrawal, G.P.: Mid-infrared supercontinuum generation using dispersion-engineered Ge11:5As24Se64:5 chalcogenide channel Waveguide. J. Opt. Express 23(1), 6903–6914 (2015)

    Article  ADS  Google Scholar 

  • Lamont, M.R.E., Davies, B.L., Choi, D.Y., Madden, S., Eggleton, B.J.: Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide. J. Opt. Express 16, 14938–14944 (2008)

    Article  ADS  Google Scholar 

  • Li, H.H.: Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9(1), 561–658 (1980)

    Article  ADS  Google Scholar 

  • Li, H., Ogusu, K.: Analysis of optical instability in a double-coupler nonlinear fiber ring resonator. J. Opt. Commun. 157(6), 27–32 (1998a)

    Article  ADS  Google Scholar 

  • Li, H., Ogusu, K.: Analysis of optical instability in a double-coupler nonlinear fiber ring resonator. Opt. Commun. 157(1–6), 27–32 (1998b)

    Article  ADS  Google Scholar 

  • Lin, Q., Painter, O.J., Agrawal, G.P.: Nonlinear optical phenomena in siliconwaveguides: modeling and applications. J. Opt. Express 15(1), 16604–16644 (2007)

    Article  ADS  Google Scholar 

  • Lin, Q., Zhang, J., Fauchet, P.M., Agrawal, G.P.: Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. J. Opt. Express 14, 4786--4799 (2006)

    Article  ADS  Google Scholar 

  • Murphy, T.E.: software available at http://www.photonics.umd.edu (2016)

  • Ogusu, K.: Dymamic behavior of reflection optical bistability in a nonlinear fiber ring resonator. J. IEEE Quantum Electron. 32(9), 1537–1543 (1992)

    Article  ADS  Google Scholar 

  • Ogusu, K.: Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator. IEEE J. Quantum Electron. 32(9), 1537–1543 (1996)

    Article  ADS  Google Scholar 

  • Ogusu, K., Oda, Y.: Modeling of the dynamic transmission properties of chalcogenide ring resonators in presence of fast and slow nonlinearities. J. Opt. Express 19(2), 649–659 (2011)

    Article  ADS  Google Scholar 

  • Ogusu, K., Shigekuni, H., Yokota, Y.: Dynamic transmission properties of a nonlinear fiber ring resonator. Opt. Lett. 20(22), 2288–2290 (1995)

    Article  ADS  Google Scholar 

  • Phatharaworamet, T., et al.: Random binary code generation Using dark-bright soliton conversion control within a Panda ring resonator. IEEE J. Lightwave Technol. 28(19), 2804–2809 (2010)

    Article  ADS  Google Scholar 

  • Ranka, J.K., Windeler, R.S.: Optical properties of high-delta air–silica microstructure optical fibers. J. Opt. Lett. 25(1), 796--798 (2000)

    Article  ADS  Google Scholar 

  • Rieger, G.W., Virk, K.S., Young, J.: Nonlinear propagation of ultrafast 1.5… contrast silicon-on-insulator waveguides. J Appl. Phys. Lett. 84(1), 900--902 (2004)

    Article  ADS  Google Scholar 

  • Rong, H., Kuo, Y., Liu, A., Paniccia, M., Cohen, O.: High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. J. Opt. Express 14(1), 1182--1188 (2006)

    Article  ADS  Google Scholar 

  • Ruknlenko, I.D., Premaratne, M., Agrawal, G.P.: Analytical study of optical bistability in silicon ring resonators. J. Opt. Lett. 35(1), 55–57 (2010)

    Article  ADS  Google Scholar 

  • Sarid, D.: Analysis of bistability in a ring-channel waveguide. Opt. Lett. 6(11), 552–553 (1981)

    Article  ADS  Google Scholar 

  • Singh, N., Hudson, D.D., Yu, Y., Grillet, C., Jackson, S.D., Bedoya, A.C., Read, A., Atanackovic, P., Duvall, S.G., Palomba, S., Davies, B.L., Madden, S., Moss, D.J., Eggleton, B.J.: Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. J. Optica 2(1), 797–802 (2015)

    Article  Google Scholar 

  • Van, V., Ibrahim, T.A., Absil, P.P., Johnson, F.G., Grover, R., Ho, P.-P.: Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002)

    Article  Google Scholar 

  • Xu, Q., Lipson, M.: Carrier-induced optical bistability in silicon ring resonators. Opt. Lett. 31(3), 341–343 (2006)

    Article  ADS  Google Scholar 

  • Yin, L., Lin, Q., Agrawal, G.P.: Dispersion tailoring and soliton propagation in silicon waveguides. J. Opt. Lett. 31, 1295--1297 (2006)

    Article  ADS  Google Scholar 

  • Yin, L., Lin, Q., Agrawal, G.P.: Soliton fission and supercontinuum generation in silicon waveguides. J. Opt. Lett. 32, 391–393 (2007)

    Article  ADS  Google Scholar 

  • Yupapin, P.P.: Coupler-loss and coupling-coefficient-dependent bistability and instability in a fiber ring resonator. J. Optik 119(1), 492–494 (2008)

    Article  ADS  Google Scholar 

  • Yupapin, P.P., Sangwara, N., Pornsuwancharoen, N.: Generalized optical filters using a nonlinear micro ring resonator system. J. Optik 121(1), 732–738 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to give their acknowledgments to Kasetsart University, Bangkok, Thailand and Ton Duc Thang University, Ho Chi Minh City, Vietnam for the use of laboratory and computer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yupapin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiangga, S., Suwanarat, S., Phatharacorn, P. et al. Super-continuum generation of an optical pulse in a silicon micro-ring resonator. Opt Quant Electron 48, 495 (2016). https://doi.org/10.1007/s11082-016-0766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0766-9

Keywords

Navigation