Skip to main content
Log in

Aperture averaging and receiver diversity for FSO downlink in presence of atmospheric turbulence and weather conditions for OOK, M-PPM and M-DPPM schemes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We evaluate the error performance of a free space optical (FSO) downlink from a geostationary earth orbit satellite to an earth station in presence of turbulence and different weather conditions such as fog, clouds, etc. Combined channel state probability density function (pdf) is derived by using log-normal model for weak turbulence, gamma–gamma model for moderate to strong turbulence and Beer–Lambert Law for weather effects. Bit error rate (BER) expressions are derived using the combined channel state pdf for on-off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. It is observed that the link performance degrades with increase in the strength of ground level turbulence. Presence of weather conditions causes additional degradation with moderate fog causing the worst effect followed by light and thin fog with respect to clear air condition. Dense or thick fog and/or clouds may lead to complete link failure owing to their large attenuation coefficient. Further, enhancement in the link performance by using aperture averaging and receiver diversity techniques is examined and compared for all three schemes. It is seen that performance improves with increase in the receiver diameter and number of multiple independent receivers. Among the three modulation schemes, link with M-PPM scheme gives the best performance in terms of BER followed by M-DPPM and OOK schemes with or without diversity techniques. Thus, an M-PPM based FSO downlink with an array of finite sized receivers i.e., single input multiple output link can be a viable alternative for efficient data transfer in presence of atmospheric turbulence and different weather conditions from a satellite to an earth station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abaza, M., Mesleh, R., Mansour, A., Aggoune, E.H.M.: Diversity techniques for a free-space optical communication system in correlated log-normal channels. Opt. Eng. 53(1), 016102-1–016102-18 (2014)

    Article  ADS  Google Scholar 

  • Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media, pp. 395–529. SPIE Press, Washington (2005)

    Book  Google Scholar 

  • Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation with Applications, pp. 167–274. SPIE Press, Washington (2001)

    Book  Google Scholar 

  • Arnon, S., Uysal, M., Ghassemlooy, Z., Xu, Z., Cheng, J.: Optical wireless communications. IEEE J. Sel. Area. Commun. 33(9), 1733–1737 (2015)

    Article  Google Scholar 

  • Chadha, D.: Terrestrial Wireless Optical Communication, pp. 194–222. Tata McGraw-Hill, New Delhi (2012)

    Google Scholar 

  • Dios, F., Rubio, J., Rodrfguez, A., Comern, A.: Scintillation and beam-wander analysis in an optical ground station satellite uplink. Appl. Opt. 43(19), 3866–3873 (2004)

    Article  ADS  Google Scholar 

  • Feng, F., White, I., Wilkinson, T.: Aberration correction for free space optical communications using rectangular zernike modal wavefront sensing. J. Lightwave Technol. 2(6), 1239–1245 (2014)

    Article  ADS  Google Scholar 

  • Fidler, F., Knapek, M., Horwath, J., Leeb, W.R.: Optical communications for high-altitude platforms. IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010)

    Article  Google Scholar 

  • Gappmair, W., Flohberger, M.: Error performance of coded FSO links in turbulent atmosphere modeled by gamma–gamma distributions. IEEE Trans. Wirel. Commun. 8(5), 2209–2213 (2009)

    Article  Google Scholar 

  • Ghassemlooy, Z., Popoola, W.O.: Terrestrial free space optical communications. In: Fares, S.A., Adachi, F. (eds.) Mobile and Wireless Communications Network Layer and Circuit Level Design, pp. 355–391. InTech, Rijeka (2010)

    Google Scholar 

  • Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communication, pp. 62–189. CRC Press, Boca Raton (2012)

    Google Scholar 

  • Gultepe, I.: Fog and Boundary Layer Clouds: Fog Visibility and Forecasting, pp. 1207–1220. Springer, Basel (2007)

    Google Scholar 

  • Guo, H., Luo, B., Ren, Y., Zhao, S., Danq, A.: Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius. Opt. Lett. 35(12), 1977–1979 (2010)

    Article  ADS  Google Scholar 

  • Haykin, S.: Digital Communications, pp. 273–357. Wiley, London (2006)

    Google Scholar 

  • Horvath, H.: On the applicability of the koschmieder visibility formula. Atmos. Environ. 5(3), 177–184 (1971)

    Article  ADS  Google Scholar 

  • Huge lenses, pp. 1–3. http://alag3.mfa.kfki.hu/astro/giantlenses/200mm.htm. Accessed December 2015

  • Jain, V.K.: Effect of background noise in space optical communication systems. Int. J. Electron. Commun. 47(2), 98–107 (1993)

    Google Scholar 

  • Jiang, Y., Tao, K., Song, Y., Fu, S.: Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite laser uplink communications. Appl. Opt. 53(7), 1268–1273 (2014)

    Article  ADS  Google Scholar 

  • Kaur, P., Jain, V., Kar, S.: Performance analysis of FSO array receivers in presence of atmospheric turbulence. IEEE Photonics Technol. Lett. 26(12), 1165–1168 (2014)

    Article  Google Scholar 

  • Khalighi, M., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)

    Article  Google Scholar 

  • Khalighi, M., Schwartz, N., Aitamer, N., Bourennane, S.: Fading reduction by aperture averaging and spatial diversity in optical wireless systems. J. Opt. Commun. Netw. 1(6), 580–593 (2009)

    Article  Google Scholar 

  • Latinovic, V.: Advanced Optical Communication Systems, pp. 27–40. Clanrye International, New York (2015)

    Google Scholar 

  • Ma, J., Jiang, Y., Yu, S., Tan, L., Du, W.: Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications. Opt. Commun. 283(2), 237–242 (2010)

    Article  ADS  Google Scholar 

  • Majumdar, A.K.: Advanced Free Space Optics (FSO): A Systems Approach, pp. 69–173. Springer, New York (2015)

    Google Scholar 

  • Nadeem, F., Leitgeb, E., Kandus, G.: Comparing the cloud effects on hybrid network using optical wireless and GHz links. In: Proc. Commun. Systems Netw. and Digital Signal Processing (CSNDSP), Newcastle, UK, pp. 553–557 (2010)

  • Navidpour, S., Uysal, M., Kavehrad, M.: BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007)

    Article  Google Scholar 

  • Prudnikov, A., Brychkov, Y., Marichev, O.: Integrals and Series, pp. 559–563. Gordon and Breach Publishers, Amsterdam (1986)

    MATH  Google Scholar 

  • Rajbhandari, S., Ghassemlooy, Z., Haigh, P., Kanesan, T., Tang, X.: Experimental error performance of modulation schemes under a controlled laboratory turbulence FSO channel. J. Lightwave Technol. 33(1), 244–250 (2015)

    Article  ADS  Google Scholar 

  • Sandalidis, H.G.: Performance of a laser earth-to-satellite link over turbulence and beam wander using the modulated gamma–gamma irradiance distribution. Appl. Opt. 50(6), 952–961 (2011)

    Article  ADS  Google Scholar 

  • The wolfram functions. http://www.functions.wolfram.com/07.34.21.0013.01. Accessed November 2015

  • Toyoshima, M., Takayama, Y., et al.: Ground-to-satellite laser communication experiments. IEEE Aerosp. Electron. Syst. Mag. 23(8), 10–18 (2008)

    Article  Google Scholar 

  • Tsiftsis, T., Sandalidis, H., Karagiannidis, G., Uysal, M.: Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 8(2), 951–957 (2009)

    Article  Google Scholar 

  • Viswanath, A., Kaushal, H., Jain, V.K., Kar, S.: Evaluation of performance of ground to satellite free space optical link under turbulence conditions for different intensity modulation schemes. In: Proc. SPIE Photonics West, San Francisco, USA, pp. 8971-1–8971-12 (2014)

  • Viswanath, A., Jain, V.K., Kar, S.: Experimental evaluation of the effect of aperture averaging technique on the performance of free space optical communication link for different intensity modulation schemes. In: Commun. Systems and Netw. (COMSNETS), Bangalore, India, pp. 1–5 (2015a)

  • Viswanath, A., Jain, V.K., Kar, S.: Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes. IET Commun. 9(18), 2253–2258 (2015b)

    Article  Google Scholar 

  • Viswanath, A., Gopal, P., Jain, V.K., Kar, S.: Performance enhancement by aperture averaging in terrestrial and satellite free space optical links. IET Optoelectron. 10(3), 111–117 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjitha Viswanath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanath, A., Jain, V.K. & Kar, S. Aperture averaging and receiver diversity for FSO downlink in presence of atmospheric turbulence and weather conditions for OOK, M-PPM and M-DPPM schemes. Opt Quant Electron 48, 435 (2016). https://doi.org/10.1007/s11082-016-0706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0706-8

Keywords

Navigation