Skip to main content
Log in

Diffraction modulation evolution from a knife-edge for small-scale self-focusing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Small-scale self-focusing is mostly caused by spatial diffraction modulation. It is the major factor for degradation of the laser pulse quality and the maximum output power. We investigate diffraction modulation evolution from a knife-edge for small-scale self-focusing through numerical calculation and experiment. We find that the effect of diffraction modulation weakens and the effect of small-scale self-focusing strengthens with the decrease of the truncation parameter. As the truncation parameter decreased continually, the effect of small-scale self-focusing strengthens sequentially,the laser begins split. In addition, the position of new growth for small-scale self-focusing is increasingly far away from the diffraction modulation peak and the diffraction fringes are broadened with the increment of the propagation distance. Our experimental results are in good agreement with an approximate theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. ZhETF Pisma Redaktsiiu 3, 471 (1966)

    ADS  Google Scholar 

  • Bliss, E.S.: Propagation of a high-intensity laser pulse with small-scale intensity modulation. Appl. Phys. Lett. 25, 448–450 (2003)

    Article  ADS  Google Scholar 

  • Campillo, A.J., Shapiro, S.L., Suydam, B.R.: Periodic breakup of optical beams due to self-focusing. Appl. Phys. Lett. 23, 628–630 (1973)

    Article  ADS  Google Scholar 

  • Canabarro, A.A., Santos, B., Gleria, I., Lyra, M.L., Sombra, A.S.B.: Interplay of XPM and nonlinear response time in the modulational instability of copropagating optical pulses. JOSA. B. 27, 1878–1885 (2010)

    Article  ADS  Google Scholar 

  • Chekalin, S.V., Kandidov, V.P.: From self-focusing light beams to femtosecond laser pulse filamentation. Phys. Usp. 56, 123–140 (2013)

    Article  ADS  Google Scholar 

  • Chu, W., Li, G.H., Xie, H.Q., Ni, J.L., Yao, J.P., Zeng, B., Zhang, H.S., Jing, C.R., Xu, H.L., Cheng, Y., Xu, Z.Z.: A self-induced white light seeding laser in a femtosecond laser filament. Laser Phys. Lett. 11, 015301 (2014)

    Article  ADS  Google Scholar 

  • Cook, K., Kar, A., Lamb, R.A.: White-light filaments induced by diffraction effects. Opt. Express 13, 2025–2031 (2005)

    Article  ADS  Google Scholar 

  • Deng, Y.B., Fu, X.Q., Tan, C., Yang, H., Deng, S.G., Xiong, C.X., Zhang, G.F.: Experimental investigation of spatiotemporal evolution of femtosecond laser pulses during small-scale self-focusing. Appl. Phys. B. 114, 449–454 (2014)

    Article  ADS  Google Scholar 

  • Dulkeith, E., Vlasov, Y.A., Chen, X., Panoiu, N.C., Osgood Jr, R.M.: Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14, 5524–5534 (2006)

    Article  ADS  Google Scholar 

  • Freund, I.: Nonlinear diffraction. Phys. Rev. Lett. 21, 1404–1406 (1968)

    Article  ADS  Google Scholar 

  • Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  • Hao, Z., Stelmaszczyk, K., Rohwetter, P., Nakaema, W.M., Woeste, L.: Femtosecond laser filament-fringes in fused silica. Opt. Express 19, 7799–7806 (2011)

    Article  ADS  Google Scholar 

  • Jia, H., Xu, B., Wang, F., Zhou, L.: Small-scale self-focusing in a tapered optical beam. Appl. Opt. 51, 6089–6994 (2012)

    Article  ADS  Google Scholar 

  • Kandidov, V.P., Kosareva, O.G., Golubtsov, I.S., Liu, W., Becker, A., Akozbek, N., Bowden, C.M., Chin, S.L.: Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation). Appl. Phys. B. 77, 149–165 (2003)

    Article  ADS  Google Scholar 

  • Manela, O., Segev, M.: Nonlinear diffractive optical elements. Opt. Express 15, 10863–10868 (2007)

    Article  ADS  Google Scholar 

  • Mendez, C., De Aldana, J.V., Torchia, G.A., Roso, L.: Optical waveguide arrays induced in fused silica by void-like defects using femtosecond laser pulses. Appl. Phys. B. 86, 343–346 (2007)

    Article  ADS  Google Scholar 

  • Mendoza-Yero, O., et al.: Spatio-temporal characterization of ultrashort pulses diffracted by circularly symmetric hard-edge apertures: theory and experiment. Opt. Express 18, 20900–20911 (2010)

    Article  ADS  Google Scholar 

  • Mironov, S., Khazanov, E., Lozhkarev, V., Ginzburg, V., Mourou, G.: Small-Scale Self-Focusing Suppression at Intense Laser Beams in Mediums with Quadratic and Cubic Nonlinearity. In High Intensity Lasers and High Field Phenomena. Optical Society of America p. HWC6 (2011)

  • Mironov, S., Lozhkarev, V., Luchinin, G., Shaykin, A., Khazanov, E.: Suppression of small-scale self-focusing of high-intensity femtosecond radiation. Appl. Phys. B. 113, 147–151 (2013)

    Article  ADS  Google Scholar 

  • Ngo, Q.M., Le, K.Q., Lam, V.D.: Optical bistability based on guided-mode resonances in photonic crystal slabs. JOSA B 29, 1291–1295 (2012)

    Article  ADS  Google Scholar 

  • Nolte, S., Will, M., Burghoff, J., Tuennermann, A.: Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109–111 (2003)

    Article  ADS  Google Scholar 

  • Rohwetter, P., Queisser, M., Stelmaszczyk, K., Fechner, M., Woste, L.: Laser multiple filamentation control in air using a smooth phase mask. Phys. Rev. A 77, 013812 (2008)

    Article  ADS  Google Scholar 

  • Schweinsberg, A., Kuper, J., Boyd, R.W.: Loss of spatial coherence and limiting of focal plane intensity by small-scale laser-beam filamentation. Phys. Rev. A 84, 053837 (2011)

    Article  ADS  Google Scholar 

  • Semak, V.V., Shneider, M.N.: Effect of power losses on self-focusing of high-intensity laser beam in gases. J. Phys. D Appl. Phys. 46, 185502 (2013)

    Article  ADS  Google Scholar 

  • Shim, B., Schrauth, S.E., Gaeta, A.L.: Filamentation in air with ultrashort mid-infrared pulses. Opt. Express 19, 9118–9126 (2011)

    Article  ADS  Google Scholar 

  • Sun, H.B., Xu, Y., Matsuo, S., Misawa, H.: Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica. Opt. Rev. 6, 396–398 (1999)

    Article  Google Scholar 

  • Velchev, I., Pattnaik, R., Toulouse, J.: Two-beam modulation instability in non-instantaneous nonlinear media. Phys. Rev. Lett. 91, 093905 (2003)

    Article  ADS  Google Scholar 

  • Wan, W., Jia, S., Fleischer, J.W.: Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3, 46–51 (2007)

    Article  Google Scholar 

  • Wan, W.J., et al.: Diffraction from an edge in a self-focusing medium. Opt. Lett. 35, 2819–2821 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110161110012), the Department of Science and Technology of Hunan Province (2013FJ2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiquan Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Tan, C. & Fu, X. Diffraction modulation evolution from a knife-edge for small-scale self-focusing. Opt Quant Electron 47, 2697–2707 (2015). https://doi.org/10.1007/s11082-015-0156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0156-8

Keywords

Navigation