Skip to main content
Log in

Physical properties of Mo-doped ZnO by first principles and Boltzmann equations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The effect of Mo-dopant on the structural, electronic, optical and electrical properties of ZnO have been investigated via both first principles study and Boltzmann equations. Results show that, the incorporations of Mo-dopant on Zn-site lead to a blue-shift in the optical gap energy. Furthermore, these incorporations create shallow donor states partially filled around Fermi level in the bottom of the conduction band. Hence, the transmittance is decreased in the visible-IR, whereas, is significantly improved in the UV region. More importantly, the electrical conductivity is fairly enhanced even at high Mo-concentration. Finally, this study reveals to potential to use of Mo-doped ZnO system as n-type transparent conducting electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amin, B., Ahmad, M.I., Maqbool, S., Said, G., Ahmad, R.: Ab initio study of the bandgap engineering of Al1–xGaxN for optoelectronic application. J. Appl. Phys. 109, 023109 (2011)

    Article  ADS  Google Scholar 

  • Ammaih, Y., et al.: Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Opt. Quantum Electron. 46, 229–234 (2014)

    Article  Google Scholar 

  • Aulbur, W.G., Strdele, M., Gorling, A.: Exact-exchange-based quasiparticle calculations. A. Phys. Rev. B 62, 7121 (2000)

    Article  ADS  Google Scholar 

  • Bakhtiar, U.H., Ahmed, R., Goumri-Said, S., Shaari, A., Afaq, A.: Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches. Ph. Transit. 86, 1167–1177 (2013)

    Article  Google Scholar 

  • Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)

    Article  ADS  Google Scholar 

  • Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K: an augmented plane wave and local orbitals program for calculating crystal properties. In: Vienna, K. (ed.) University of Technology, Austria, Schwarz (2001)

  • Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  • Chaput, L., Pécheur, P., Tobola, J., Scherrer, H.: Transport in doped skutterudites: Ab initio electronic structure calculations. Phys. Rev. B 72, 085126 (2005)

    Article  ADS  Google Scholar 

  • Chu, S., Lim, J.H., Mandalapu, L.J., Yang, Z., Li, L., Liu, J.L.: Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes. Appl. Phys. Lett. 92, 152103 (2008)

    Article  ADS  Google Scholar 

  • Clatot, J., Campet, G., Zeinert, A., Labrugère, C., Nistor, M., Rougier, A.: Low temperature Si doped ZnO thin films for transparent conducting oxides, Sol. Sol. Energy. Sol. Cells 95, 2357–2362 (2011)

    Article  Google Scholar 

  • Corpus-Mendoza, A.N., De Souza, M.M., Hamelmann, F.: Transport mechanisms and effective Schottky barrier height of ZnO/a-Si:H and ZnO/\(\mu \)c-Si:H heterojunction solar cells. J. Appl. Phys. 114, 184505 (2013)

    Article  ADS  Google Scholar 

  • Cu, X.Q., Zhu, L.P., Cao, L., Ye, Z.Z., He, H.P., Chu, P.K.: Optical and electrical properties of ZnO:Al thin films synthesized by low-pressure pulsed laser deposition. Mater. Sci. Semicond. Process. 14, 48–51 (2011)

    Article  Google Scholar 

  • David, K., Tran, F., Blaha, P.: Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85, 155109 (2012)

    Article  ADS  Google Scholar 

  • Dixit, H., Saniz, R., Cottenier, S., Lamoen, D., Partoens, B.: Electronic structure of transparent oxides with the Tran–Blaha modified Becke–Johnson potentia. J. Phys.: Condens. Matter 24, 20 (2012)

    Google Scholar 

  • Duenow, J.N., Gessert, T.A., Wood, D.M., Barnes, T.M., Young, M., To, B., Coutts, T.J.: Transparent conducting zinc oxide thin films doped with aluminum and molybdenum. J. Vac. Sci. Technol. A 25, 955 (2007)

    Article  Google Scholar 

  • Erhart, P., Albe, K., Klein, A.: First-principles study of intrinsic point defects in ZnO: role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B 73, 205203 (2006)

    Article  ADS  Google Scholar 

  • Estrich, N.A., Hook, D.H., Smith, A.N., Leonard, J.T., Laughlin, B., Maria, J.P.: Ga-doped ZnO conducting antireflection coatings for crystalline silicon solar cells. J. Appl. Phys. 113, 233703 (2013)

    Article  ADS  Google Scholar 

  • Faleev, S.V., Van Schilfgaard, M., Kotani, T.: All-electron self-consistent GW approximation: application to Si, MnO, and NiO. Phys. Rev. Lett. 93, 126406 (2004)

    Article  ADS  Google Scholar 

  • Gao, X., Uechara, K., Klug, D., Patchkovskii, S., Tse, J., Tritt, T.: Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers. Phys. Rev. B 72, 125202 (2005)

    Article  ADS  Google Scholar 

  • Ginley, D.S., Bright, C.: Transparent conducting oxides. MRS Bull. 25, 15 (2000)

    Article  Google Scholar 

  • Gürel, H.H., Akinci, Ö., Ünlü, H.: First principles calculations of Cd and Zn chalcogenides with modified Becke–Johnson density potential. Superlattices Microstruct. 51, 725–732 (2012)

    Article  ADS  Google Scholar 

  • Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M., Gonze, X.: Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013)

    Article  ADS  Google Scholar 

  • Heyd, J., Peralta, J.E., Scuserie, G.E., Martin, R.L.: Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005)

    Article  ADS  Google Scholar 

  • Huang, G.Y., Wang, C.Y., Wang, J.T.: Detailed check of the LDA + U and GGA + U corrected method for defect calculations in wurtzite ZnO. Comput. Phys. Commun. 183, 1749–1752 (2012)

    Article  ADS  Google Scholar 

  • Ito, N., Sato, Y., Song, P.K., Kaijio, A., Inoue, K., Shigesato, Y.: Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid films 496, 99 (2006)

    Article  ADS  Google Scholar 

  • Jaffe, J., Snyder, J., Lin, Z., Hess, A.: LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 62, 1660 (2000)

    Article  ADS  Google Scholar 

  • Kim, H.J., et al.: Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature. Phys. Rev. B 86, 165205 (2012)

    Article  ADS  Google Scholar 

  • Kisi, E.H., Elcombe, M.M.: u Parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Cryst. C 45, 1867–1870 (1989)

    Article  Google Scholar 

  • Klingshirn, C.: ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782 (2007)

    Google Scholar 

  • Liang, W.Y., Yoffe, A.D.: Transmission spectra of ZnO single crystals. Phys. Rev. Lett. 20, 59–62 (1968)

    Article  ADS  Google Scholar 

  • Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)

    Article  ADS  Google Scholar 

  • Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    Article  MATH  ADS  Google Scholar 

  • Madsen, G.K.H.: Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc. 128, 12140 (2006)

    Article  Google Scholar 

  • Meinert, M.: Modified Becke-Johnson potential investigation of half-metallic Heusler compounds. Phys. Rev. B 87, 045103 (2013)

    Article  ADS  Google Scholar 

  • Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35–S44 (2005)

    Article  ADS  Google Scholar 

  • Mizoguchi, H., Kamiya, T., Matsuishi, S., Hosono, H.: A germanate transparent conductive oxide. Nat. Commun. 2, 470 (2011)

    Article  ADS  Google Scholar 

  • Moss, T.S.: The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67 (1954)

  • Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 (2003)

    Article  ADS  Google Scholar 

  • Oba, F., Togo, A., Tanaka, I., Paier, J., Kresse, G.: Defect energetics in ZnO: a hybrid Hartree-Fock density functional study. Phys. Rev. B 77, 245202 (2008)

    Article  ADS  Google Scholar 

  • Okoye, C.M.I.: Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. J. Phys. Condens. Matter. 15, 5945 (2003)

    Article  ADS  Google Scholar 

  • Ong, K.P., Singh, D.J., Wu, P.: Analysis of the thermoelectric properties of n-type ZnO. Phys. Rev. B 83, 115110 (2011)

    Article  ADS  Google Scholar 

  • Ozgur, U., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  • Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C., Angyan, J.G.: Screened hybrid density functionals applied to solids. J. Chem. Phys. 125, 249901 (2006)

    Article  ADS  Google Scholar 

  • Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T.: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 5 (2005)

  • Perdew, J.P., Burke, K., Emzerholf, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  • Saha, S., Sinha, T.P.: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO\(_3\). Phys. Rev. B 62, 8828 (2000)

    Article  ADS  Google Scholar 

  • Schleife, A., Fuchs, F., Furthmüller, J., Bechstedt, F.: First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73, 245212 (2006)

    Article  ADS  Google Scholar 

  • Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  • Shi, J., Ma, H.H., Ma, G., Ma, H., Shen, H.: Structure and ultrafast carrier dynamics in n-type transparent Mo:ZnO nanocrystalline thin films. Appl. Phys. A 92, 357 (2008)

    Article  ADS  Google Scholar 

  • Shishkin, M., Marsman, M., Kresse, G.: Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Phys. Rev. Lett. 99, 246403 (2007)

    Article  ADS  Google Scholar 

  • Shiyou, C., Gong, X.G., Aron, W., Wei, S.H.: Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: first-principles insights. Phys. Appl. Lett. 94, 0419003 (2009)

    Google Scholar 

  • Slassi, A.: Ab initio study of a cubic perovskite: Structural, electronic, optical and electrical properties of native, lanthanum and antimony-doped barium tin oxide. Mater. Sci. Semicond. Process. 24, 110–116 (2015)

  • Slassi, A., Naji, S., Benyoussef, A., Hamedoun, M., El Kenz, A.: On the transparent conducting oxide Al doped ZnO: first principles and Boltzmann equations study. J. Alloys Compd. 605, 118–123 (2014)

    Article  Google Scholar 

  • Sonawane, B.K., et al.: Structural, optical and electrical properties of post annealed Mg doped ZnO films for optoelectronics applications. Opt. Quantum Electron. 41, 17–26 (2009)

    Article  Google Scholar 

  • Swapna, R., Santhosh Kumar, M.C.: Growth and characterization of molybdenum doped ZnO thin films by spray pyrolysis. J. Phys. Chem. Solids 74, 418–425 (2013)

    Article  ADS  Google Scholar 

  • Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  • Van Schilfgaarde, M., Kotani, T., Faleev, S.V.: Adequacy of approximations in GW theory. Phys. Rev. B 74, 245125 (2006)

    Article  ADS  Google Scholar 

  • Wager, J.F.: Transparent electronics. Science 300, 1245 (2003)

    Article  Google Scholar 

  • Wang, J., Sun, B., Gao, F., Greenham, N.C.: Memristive devices based on solution-processed ZnO nanocrystals. Phys. Status Solidi A 207, 484–487 (2010)

    Article  ADS  Google Scholar 

  • Wu, C., Shen, J., Ma, J., Wang, S., Zhang, Z., Yang, X.: Electrical and optical properties of molybdenum-doped ZnO transparent conductive thin films prepared by dc reactive magnetron sputtering, Semicond. Sci. Technol. 24, 125012 (6pp) (2009)

  • Wu, H.C., Peng, Y.C., Chen, C.C.: Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations. Opt. Mater. 35, 509–515 (2013)

    Article  ADS  Google Scholar 

  • Xu, J., Shi, S., Zhang, X., Wang, Y., Zhu, M., Li, L.: Structural and optical properties of (Al, K)-co-doped ZnO thin films deposited by a sol–gel technique. Mater. Sci. Semicond. Process. 16, 732–737 (2013)

    Article  Google Scholar 

  • Zhang, S., Cao, Q.: First-principles and experimental studies of the IR emissivity of Sn-doped ZnO. Mater. Sci. Semicond. Process. 16, 1447–1453 (2013)

    Article  Google Scholar 

  • Zhou, X.H., Hu, Q.H., Fu, Y.: First-principles LDA+U studies of the In-doped ZnO transparent conductive oxide. J. Appl. phys. 104, 063703 (2008)

    Article  ADS  Google Scholar 

  • Ziman, J.M.: Electrons and phonons. Oxford University Press, New York (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We thank P. Blaha, K. Schwarz and the group of WIEN2K for the support of the pachage WIEN2K and for useful discussions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Slassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slassi, A. Physical properties of Mo-doped ZnO by first principles and Boltzmann equations. Opt Quant Electron 47, 2465–2477 (2015). https://doi.org/10.1007/s11082-015-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0131-4

Keywords

Navigation