Skip to main content
Log in

On the amplification of unchirped soliton pulses in a dispersion-decreasing fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, based on a variable-coefficient nonlinear Schrödinger (vcNLS) equation, amplification of the fundamental and second-order unchirped solitons in the dispersion-decreasing fiber without any external amplification device, which is different from those in the existing literatures, is studied. Via symbolic computation, soliton solutions of the vcNLS equation are obtained. For a fundamental-soliton pulse, the amplitude is amplified by the gain during the propagation, whereas the width keeps unchanged. Because of the equilibrium between the gain, nonlinearity and varying dispersion, soliton structure is not destroyed, and the amplified fundamental soliton is free from the pedestal and chirp. With the increase of the absolute value of the gain coefficient \(\alpha \), magnification of the fundamental-soliton amplitude is enhanced in the same propagation distance. For the second-order soliton, the width is compressed and the amplitude is amplified, because the amplification process is accompanied by the compression of the soliton. Period of the second-order soliton decreases exponentially during the propagation, and decreases with the increase of the absolute value of \(\alpha \) in the same propagation distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal, G.P.: Effect of two-photon absorption on the amplification of ultrashort optical pulses. Phys. Rev. E 48, 2316–2318 (1993)

    Article  ADS  Google Scholar 

  • Agrawal, G.P.: Optical Fiber Communications III. Academic, New York (1997)

    Google Scholar 

  • Agrawal, G.P.: Nonlinear Fibre Optics, 3rd edn. Academic, San Diego (2003)

    Google Scholar 

  • Agrawal, G.P.: Applications of Nonlinear Fiber Optics, 2nd edn. Academic, New York (2008)

    Google Scholar 

  • Aguergaray, C., Andersen, T.V., Schimpf, D.N., Schmidt, O., Rothhardt, J., Schreiber, T., Limpert, J.: Parametric amplification and compression to ultrashort pulse duration of resonant linear waves. Opt. Exp. 15, 5699–5710 (2007)

    Article  ADS  Google Scholar 

  • Audebert, P., Lecherbourg, L., Bastiani-Ceccotti, S., Geindre, J.P., Blancard, C., Cossé, P., Faussurier, G., Shepherd, R., Renaudin, P.: Atomic processes in plasmas created by an ultra-short laser pulse. J. Phys. Conf. Ser. 112, 042001-1–042001-4 (2008)

    Google Scholar 

  • Cao, W.H., Wai, P.K.A.: Higher-order soliton compression with pedestal suppression in nonlinear optical loop mirrors constructed from dispersion decreasing fibers. Opt. Commun. 221, 181–190 (2003)

    Article  ADS  Google Scholar 

  • Desurvire, E.: Erbium-Doped Fiber Amplifiers: Principles and Applications. Wiley, New York (1994)

    Google Scholar 

  • Dubietis, A., Tamo\(\breve{s}\)auskas, G., Polesana, P., Valiulis, G., Valtna, H., Faccio, D., Di Trapani, P., Piskarskas, A.: Highly efficient four-wave parametric amplification in transparent bulk Kerr medium. Opt. Exp. 15, 11126–11132 (2007)

  • Gagnon, L., Bélanger, P.A.: Adiabatic amplification of optical solitons. Phys. Rev. A 43, 6187–6193 (1991)

    Article  ADS  Google Scholar 

  • Gasch, A., Berning, T., Jäger, D.: Generation and parametric amplification of solitons in a nonlinear resonator with a Korteweg-de Vries medium. Phys. Rev. A 34, 4528–4531 (1986)

    Article  ADS  Google Scholar 

  • Hilaire, S., Pagnoux, D., Roy, P., Février, S.: Numerical study of single mode Er-doped microstructured fibers: influence of geometrical parameters on amplifier performances. Opt. Exp. 14, 10865–10877 (2006)

    Article  ADS  Google Scholar 

  • Hirota, R.: Exact solutions of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  • Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave. J. Math. Phys. 14, 805–809 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kanna, T., Lakshmanan, M., Tchofo Dinda, P., Akhmediev, N.: Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys. Rev. E 73, 026604-1–026604-15 (2006)

    Google Scholar 

  • Korneev, N., Vysloukh, V.A., Rodriguez, E.M.: Propagation dynamics of weakly localized cnoidal waves in dispersion-managed fiber: from stability to chaos. Opt. Exp. 11, 3574–3582 (2003)

    Article  ADS  Google Scholar 

  • Kubota, Y., Odagaki, T.: Numerical study of soliton scattering in inhomogeneous optical fibers. Phys. Rev. E 68, 026603-1–026603-9 (2003)

  • Larionova, Y., Weiss, C.O., Egorov, O.: Dark solitons in semiconductor resonators. Opt. Exp. 13, 8308–8317 (2005)

    Article  ADS  Google Scholar 

  • Li, B.: Exact soliton solutions to an averaged dispersion-managed fiber system equation. Z. Naturforsch. A 59, 919–926 (2004)

    Google Scholar 

  • Liao, Z.M., Agrawal, G.P.: Role of distributed amplification in designing high-capacity soliton systems. Opt. Exp. 9, 66–71 (2001)

    Article  ADS  Google Scholar 

  • Lin, G.R., Liao, Y.S., Xia, G.Q.: Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers. Opt. Exp. 12, 2017–2026 (2004)

    Article  ADS  Google Scholar 

  • Lin, Y.T., Lin, G.R.: Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation. Opt. Lett. 31, 1382–1384 (2006)

    Article  ADS  Google Scholar 

  • Lin, G.R., Lin, Y.T., Lee, C.K.: Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier. Opt. Exp. 15, 2993–2999 (2007)

    Article  ADS  Google Scholar 

  • McKinstrie, C.J., Moore, R.O., Radic, S., Jiang, R.: Phase-sensitive amplification of chirped optical pulses in fibers. Opt. Exp. 15, 3737–3758 (2007)

    Article  ADS  Google Scholar 

  • Nakkeeran, K., Kwan, Y.H.C., Wai, P.K.A.: Method to find the stationary solution parameters of chirped fiber grating compensated dispersion-managed fiber systems. Opt. Commun. 215, 315–321 (2003)

    Article  ADS  Google Scholar 

  • Ngabireng, C.M., Dinda, P.T.: Radiating and nonradiating dispersion-managed solitons. Opt. Lett. 30, 595–597 (2005)

    Article  ADS  Google Scholar 

  • Ozeki, Y., Takasaka, S., Inoue, T., Igarashi, K., Hiroishi, J., Sugizaki, R., Sakano, M., Namiki, S.: Nearly exact optical beat-to-soliton train conversion based on comb-like profiled fiber emulating a polynomial dispersion decreasing profile. IEEE Photonic. Tech. Lett. 17, 1698–1700 (2005)

    Article  ADS  Google Scholar 

  • Ozeki, Y., Inoue, T.: Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression. Opt. Lett. 31, 1606–1608 (2006)

    Article  ADS  Google Scholar 

  • Röser, F., Eidam, T., Rothhardt, J., Schmidt, O., Schimpf, D.N., Limpert, J., Tünnermann, A.: Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. Opt. Lett. 32, 3495–3497 (2007)

    Article  ADS  Google Scholar 

  • Samek, O., Kurowski, A., Kittel, S., Kukhlevsky, S., Hergenröder, R.: Ultra-short laser pulse ablation using shear-force feedback: femtosecond laser induced breakdown spectroscopy feasibility study. Spectrochim. Acta B 60, 1225–1229 (2005)

    Article  ADS  Google Scholar 

  • Senthilnathan, K., Nakkeeran, K., Li, Q., Wai, P.K.A.: Pedestal free pulse compression of chirped optical solitons. Opt. Commun. 285, 1449–1455 (2012)

    Article  ADS  Google Scholar 

  • Shen, Y.J., Gao, Y.T., Yu, X., Meng, G.Q., Qin, Y.: Bell-polynomial approach applied to the seventh-order Sawada-Kotera-Ito equation. Appl. Math. Comput. 277, 502–508 (2014)

    Google Scholar 

  • Sun, Z.Y., Gao, Y.T., Yu, X., Liu,Y.: Amplification of nonautonomous solitons in the Bose-Einstein condensates and nonlinear optics. Europhys. Lett. 93, 40004-1–40004-6 (2011)

    Google Scholar 

  • Sun, Z.Y., Gao, Y.T., Yu, X., Liu,Y.: Dynamics of bound vector solitons induced by stochastic perturbations: soliton breakup and soliton switching. Phys. Lett. A 377, 3283–3290 (2013)

    Google Scholar 

  • Sysliatin, A.A., Nolan, D.A.: Optical signal processing in dispersion varying fiber. J. Nonlinear Opt. Phys. 16, 171–184 (2007)

    Article  Google Scholar 

  • Takara, H., Kawanishi, S., Saruwatari, M.: Optical signal eye diagram measurement with subpicosecond resolution using optical sampling. Electron. Lett. 32, 1399–1400 (1996)

    Article  Google Scholar 

  • Tamura, K.R., Yoshida, E., Nakazawa, M.: Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source. Electron. Lett. 32, 1691–1693 (1996)

    Article  Google Scholar 

  • Wada, N., Sotobayashi, H., Kitayama, K.: 2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fiber Bragg grating with supercontinuum light source. Electron. Lett. 36, 816–817 (2000)

    Article  Google Scholar 

  • Wai, P.K.A., Cao, W.H.: Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber. J. Opt. Soc. Am. B 20, 1346–1355 (2003)

    Article  ADS  Google Scholar 

  • Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S., Nakkeeran, K.: Exact soliton solutions for the core of dispersion-managed solitons. Phys. Rev. E 68, 046605-1–046605-8 (2003)

    Google Scholar 

  • Yaita, M., Nagatsuma, T.: The effect of sampling-pulse pedestals on temporal resolution in electro-optic sampling. IEICE Trans. Electron. E81–C, 254–259 (1998)

    Google Scholar 

  • Yamamoto, T., Yoshida, E., Tamura, K.R., Yonenaga, K., Nakazawa, M.: 640-Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and “reverse dispersion fiber”. IEEE Photon. Technol. Lett. 12, 353–355 (2000)

    Article  ADS  Google Scholar 

  • Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dynamics, 75, 701–708 (2014)

    Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant No. IPOC2013B008, and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, H., Tian, B., Jiang, Y. et al. On the amplification of unchirped soliton pulses in a dispersion-decreasing fiber. Opt Quant Electron 47, 139–147 (2015). https://doi.org/10.1007/s11082-014-9892-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9892-4

Keywords

Navigation