Skip to main content
Log in

Optical properties of ZnO nanocrystals embedded in PMMA

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We report in this work the preparation of thin films of ZnO nanocrystals synthesized and dispersed in polymethylmethacrylate using a easy route and deposited in class substrate by spin coating technique. Their structural and optical properties were investigated by X-ray, absorption and photoluminescence spectroscopy. The XRD patterns exhibit sharp peaks at \(2\uptheta \) corresponding to the hexagonal (wurtzite) phase diffraction planes. The optically characterization, exhibit a wide absorption band in the range of the study and a large emission band with three peaks at 481.5, 531.09 and at 671.28 nm.The crystallites radius (R) was estimated by applying the effective mass approximation model and was about 1.8 nm. From measurements of second order susceptibilities using harmonic generation technique at \(\lambda = 1,064\,\text{ nm }\) in picoseconds regime we deduced \(\lambda _\mathrm{eff}^{<2>}\) equal to \(5.95\times 10^{-10}\) m/V. Obtained \(\lambda _\mathrm{eff}^{<2>}\) was four order of magnitude larger compared with ZnO bulk material (2.5 pm/V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashwell, G.J., Amiri, M.A.: Alignment of chevron-shaped molecules for photonic and electronic applications. J. Mater. Chem. 12(8), 2181–2183 (2002). doi:10.1039/B201801M

    Google Scholar 

  • Bloembergen, N., Pershan, P.S.: Light waves at the boundary of nonlinear media. Phys. Rev. 128(2), 606–622 (1962). doi:10.1103/PhysRev.128.606

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Brus, L.: Electronic wave functions in semiconductor clusters, experiment and theory. J. Phys. Chem. 90(12), 2555–2560 (1986). doi:10.1021/j100403a003

    Article  Google Scholar 

  • Cheng, X.L., Zhao, H., Huo, L.H., Gao, S., Zhao, J.G.: ZnO nanoparticulate thin film, preparation, characterization and gas-sensing property. Sens. Actuators B 102(2), 248–252 (2004). doi:10.1016/j.snb.2004.04.080

    Article  Google Scholar 

  • Figà, V., et al.: Characterization and investigation of NLO properties of electrodeposited polythiophenes. J. Eur. Opt. Soc. Rapid Publ. 4, 09016-1–09016-6 (2009). doi:10.2971/jeos2009.09016

  • Guo, L., Yang, S.H., Yang, C.L., et al.: Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl. Phys. Lett. 76, 2901–2903 (2000). doi:10.1063/1.126511

    Article  ADS  Google Scholar 

  • Hames, Y., Alpaslan, Z., Kösemen, A., San, S.E., Yerli, Y.: Electrochemically grown ZnO nanorods for hybrid solar cell applications. Solar Energy 84(3), 426–431 (2010). doi:10.1016/j.snb.2004.04.080

    Article  Google Scholar 

  • Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001a). doi:10.1126/science.1060367

  • Huang, M.H., Wu, Y., Fack, H., Tran, N., Weber, E., Wang, P.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13(2), 113–116 (2001b). doi:10.1002/1521-4095(200101)13:2<113:AID-ADMA113>3.0.CO;2-H

  • Ismail, A., El-Midany, A., Abdel-Aal, E.A., El-Shall, H.: Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Mater. Lett. 59(14–15), 1924–1928 (2005). doi:10.1016/j.matlet.2005.02.027

    Article  Google Scholar 

  • Jerphagnon, J., Kurtz, S.K.: Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys. 41, 1667–1681 (1970). doi:10.1063/1.1659090

  • Kajzar, F., Messier, J., Rosilio, C.: Nonlinear optical properties of thin films of polysilane. J. Appl. Phys. 60(9), 3040–3044 (1986). doi:10.1063/1.337759

    Article  ADS  Google Scholar 

  • Kapustianyk, V., Turko, B., Kostruba, A., Sofiani, Z., Derkowska, B., Dabos-Seignon, S., Barwinski, B., Eliyashevskyi, Y., Sahraoui, B.: Influence of size effect and sputtering conditions on the crystallinity and optical properties of ZnO thin films. Opt. Commun. 269(2), 346–350 (2007). doi:10.1016/j.optcom.2006.08.034

    Article  ADS  Google Scholar 

  • Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38(14), 9797–9805 (1988). doi:10.1103/PhysRevB.38.9797

    Article  ADS  Google Scholar 

  • Kulyk, B., et al.: Second and third order nonlinear optical properties of microrod ZnO films deposited on sapphire substrates by thermal oxidation of metallic zinc. J. Appl. Phys. 102(11), 113113 (2007). doi:10.1063/1.2822461

    Google Scholar 

  • Kurihara, T., Kanbara, H., Kobayashi, H., Kubodera, K., Matsumoto, S., Kaino, T.: Third-order nonlinear optical properties of DEANST: a new material for nonlinear optics. Opt. Commun. 84(3–4), 149–154 (1991). doi:10.1016/0030-4018(91)90218-3

    Article  ADS  Google Scholar 

  • Lamrani, M.A., Addou, M., Sofiani, Z., Sahraoui, B., Ebothé, J., El Hichou, A., El Hichou, N., Bernede, J.C., Dounia, R.: Cathodoluminescent and nonlinear optical properties of undoped and erbium doped, nanostructured ZnO films deposited by spray pyrolysis. Opt. Commun. 277(1), 196–201 (2007). doi:10.1016/j.optcom.2007.04.033

    Google Scholar 

  • Lee, C.Y., Li, S.Y., Lin, P., Tseng, T.Y.: Field-emission triode of low-temperature synthesized ZnO nanowires. IEEE Trans. Nanotechnol. 5(3), 216–219 (2006). doi:10.1109/TNANO.2006.874049

    Article  ADS  Google Scholar 

  • Look, D.C.: Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80(1–3), 383–387 (2001). doi:10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  • Lyu, S.C., Zhang, Y., Lu, H.J., Shim, H.W., Suh, E.K., Lee, C.J.: Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. 363, 134–138 (2002)

    Article  ADS  Google Scholar 

  • Maker, P.D., Terhune, R.W., Niseno, M.F., Savage, C.M.: Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 8(1), 21–22 (1962). http://link.aps.ord/org/. doi:10.1103/PhysRevLett.8.21

    Google Scholar 

  • Meredith, G.R.: Second-order cascading in third-order nonlinear optical processes. J. Chem. Phys. 77(12), 5863–5871 (1982). doi:10.1063/1.443859

    Article  ADS  Google Scholar 

  • Meulenkamp, E.A.: Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 102(29), 5566–5572 (1998). doi:10.1021/jp980730h

    Article  Google Scholar 

  • Miragliotta, J., Wickenden, D.K., Kistenmacher, T.J., Bryden, W.A.: Linear- and nonlinear-optical properties of GaN thin films. J. Opt. Soc. Am. B 10(8), 1447–1456 (1993). doi:10.1364/JOSAB.10.001447

    Article  ADS  Google Scholar 

  • Parissi-Poulou, M., Reizopoulou, V., Koupparis, M., Macheras, P.: Second derivative UV spectrophotometric, determination of hydrochlorothiazide and hydrochlorothiazide-amiloride combination in tablets. Int. J. Pharm. 51(2), 169–174 (1989). doi:10.1016/0378-5173(89)90251-2

    Article  Google Scholar 

  • Robinson, F.N.H.: Relations between the components of the non-linear polarisability tensor in cubic and hexagonal II–VI compounds. Phys. Lett. A 26(9), 435–436 (1968). doi:10.1016/0375-9601(68)90263-6

  • Sahraoui, B., et al.: Nonlinear optics and surface relief gratings in alkynyl-ruthenium complexes. J. Opt. A Pure Appl. Opt. 11(2), 024005-1–024005-26 (2009). doi:10.1088/1464-4258/11/2/024005

  • Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., Ito, R.: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997). doi:10.1364/JOSAB.14.002268

    Google Scholar 

  • Spanhel, L., Anderson, M.A.: Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc. 113(8), 2826–2833 (1991). doi:10.1021/ja00008a004

    Article  Google Scholar 

  • Sridevi, D., Rajendran, K.V.: Synthesis and optical characteristics of ZnO nanocrystals. Bull. Mater. Sci. 32(2), 165–168 (2009). doi:10.1007/s12034-009-0025-9

    Article  Google Scholar 

  • Tong, Y.H., Liu, Y.C., Lu, S.X., et al.: The optical properties of ZnO nanoparticles capped with polyvinyl butyral. J. Sol. Gel. Sci. Technol. 30, 157–161 (2004). doi:10.1023/B:JSST.0000039500.48283.5a

    Article  Google Scholar 

  • Wang, Z.L.: Nanostructures of zinc oxide. Mater. Today 7(6), 26–33 (2004). doi:10.1016/S1369-7021(04)00286-X

    Article  Google Scholar 

  • Wu, Y.L., Tok, A.I.Y., Boey, F.Y.C., et al.: Surface modification of ZnO nanocrystals. Appl. Surf. Sci. 253(12), 5473–5479 (2007). doi:10.1016/j.apsusc.2006.12.091

    Article  ADS  Google Scholar 

  • Zandi, S., Salamati, P., Ahmadvand, H., Hakimi, M.: Microstructure and optical properties of ZnO nanoparticles prepared by a simple method. Phys. B 406, 3215–3218 (2011). doi:10.1016/j.physb.2011.05.026

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chaieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaieb, A., Chari, A. & Sahraoui, B. Optical properties of ZnO nanocrystals embedded in PMMA. Opt Quant Electron 46, 39–46 (2014). https://doi.org/10.1007/s11082-013-9693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9693-1

Keywords

Navigation