Skip to main content
Log in

Fast projected gradient method for support vector machines

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present an algorithm for training dual soft margin support vector machines (SVMs) based on an augmented Lagrangian (AL) that uses a modification of the fast projected gradient method (FPGM) with a projection on a box set. The FPGM requires only first derivatives, which for the dual soft margin SVM means computing mainly a matrix-vector product. Therefore, AL-FPGM being computationally inexpensive may complement existing quadratic programming solvers for training large SVMs. We report numerical results for training the SVM with the AL-FPGM on data up to tens of thousands of data points from the UC Irvine Machine Learning Repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bloom V, Griva I, Kwon B, Wolff A-R (2014) Exterior-point method for support vector machines. IEEE Trans Neural Netw 25(7):1390–1393

    Article  Google Scholar 

  • Bottou L, Lin CJ (2007) Support vector machine solvers. In Large scale kernel machines. MIT Press, Cambridge, MA, pp. 301–320. [Online]. Available http://www.leon.bottou.org/papers/bottou-lin-2006

  • Chang CC, Hsu CW, Lin CJ (2000) The analysis of decomposition methods for support vector machines. IEEE Trans Neural Netw 11:1003–1008

    Article  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol, vol. 2, pp. 27:1–27:27

  • Conn AR, Gould NIM, Toint PL (1991) A globally convergent aug- mented lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J Numer Anal 28(2):545–572

    Article  MathSciNet  MATH  Google Scholar 

  • Ferris MC, Munson TS (2003) Interior-point methods for massive support vector machines. SIAM J Optim 13(3):783–804

    Article  MathSciNet  MATH  Google Scholar 

  • Frank A, Asuncion A (2010) UCI machine learning repository [Online]. Available: http://www.archive.ics.uci.edu/ml

  • Gondzio J (2012) Interior point methods in machine learning. In: Sra S, Nowozin S, Wright SJ (eds) Optimization for machine learning. MIT Press, Cambridge

    Google Scholar 

  • Griva I, Polyak R (2008) 1.5-Q-superlinear convergence of an exterior-point method for constrained optimization. J Glob Optim 40(4):679–695

    Article  MathSciNet  MATH  Google Scholar 

  • Guyon I, Gunn S, Ben-Hur A, Dror G (2005) Result analysis of the NIPS 2003 feature selection challenge. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, MA, pp 545–552

    Google Scholar 

  • Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory Appl 4:303–320

    Article  MathSciNet  MATH  Google Scholar 

  • Joachims T (1999) Making large-scale svm learning practical. In: Schlkopf B, Burges C, Smola A (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge

    Google Scholar 

  • Nesterov Y (2004) Introductory lectures on convex optimization. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Osuna E, Freund R, Girosi R (1997) An improved training algorithm for support vector machines, vol. VII. Neural networks for signal processing. In: Proceedings of the 1997 IEEE workshop (Sept 1997)

  • Platt J (1998) Sequential minimial optimization: a fast alogrithm for trainning support vector machines. Microsoft Research, Tech Rep MSR-TR-98-14

  • Polyak RA (2013) Dual fast projected gradient method for quadratic programming. Optim Lett 7:631–645

    Article  MathSciNet  MATH  Google Scholar 

  • Polyak RA (2015) Projected gradient method for non-negative least square. Contemp Math 636:167–179

    Article  MathSciNet  MATH  Google Scholar 

  • Powell MJD (1969) A method for nonlinear optimization in minimization problems. In: Fletcher R (ed) Optimization. Academic Press, New York, pp 283–298

    Google Scholar 

  • Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14:887–898

    MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (1976) Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math Oper Res 1:97–116

    Article  MathSciNet  MATH  Google Scholar 

  • Sra S, Nowozin S, Wright SJ (2012) Introduction: optimization and machine learning. In: Sra S, Nowozin S, Wright SJ (eds) Optimization for machine learning. MIT Press, Cambridge

    Google Scholar 

  • Vanderbei RJ, Shanno DF (1999) An interior-point algorithm for nonconvex nonlinear programming. Comput Optim Appl 13:231–252

    Article  MathSciNet  MATH  Google Scholar 

  • Vapnik VN (2000) The nature of statistical learning theory, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Griva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloom, V., Griva, I. & Quijada, F. Fast projected gradient method for support vector machines. Optim Eng 17, 651–662 (2016). https://doi.org/10.1007/s11081-016-9328-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-016-9328-z

Keywords

Navigation