Skip to main content
Log in

A mass- and energy-conserved DG method for the Schrödinger-Poisson equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We construct, analyze, and numerically validate a class of conservative discontinuous Galerkin (DG) schemes for the Schrödinger-Poisson equation. The proposed schemes all shown to conserve both mass and energy. For the semi-discrete DG scheme the optimal L2 error estimates are provided. Efficient iterative algorithms are also constructed to solve the second-order implicit time discretization. The presented numerical tests demonstrate the method’s accuracy and robustness, confirming that the conservation properties help to reproduce faithful solutions over long time simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoine, X., Besse, C., Klein, P.: Numerical solution of time–dependent nonlinear schrödinger equations using domain truncation techniques coupled with relaxation scheme. Laser Phys. 21, 1–12 (2011)

    Article  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  Google Scholar 

  4. Auzinger, W., Kassebacher, T., Koch, O., Thalhammer, M.: Convergence of a Strang splitting finite element discretization for the schrödinger–poisson equation. ESIAM: M2AN 51, 1245–1278 (2017)

    Article  Google Scholar 

  5. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic Related Models 6, 1937–5093 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bao, W., Tang, Q., Xu, Z.: Numerical methods and comparison for computing dark and bright solitons in the nonlinear schrödinger equation. J. Comput. Phys. 235, 423–445 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bardos, C., Erdös, L., Golse, F., Mauser, N., Yau, H.-T.: Derivation of the Schrö,dinger–Poisson equation from the quantum N-body problem. C. R. Acad. Sci. Paris Ser. I(334), 515–520 (2002)

    Article  Google Scholar 

  8. Besse, C.: A relaxation scheme for the nonlinear schrödinger equation. SIAM J. Numer. Anal. 42, 934–952 (2004)

    Article  MathSciNet  Google Scholar 

  9. Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82, 1401–1432 (2013)

    Article  MathSciNet  Google Scholar 

  10. Brezzi, F., Markowich, P.A.: The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation. Math Meth. Appl Sci 14, 35–62 (1991)

    Article  MathSciNet  Google Scholar 

  11. Carles, R.: On Fourier time-splitting methods for nonlinear schrödinger equations in the semiclassical limit. SIAM J. Numer. Anal. 51, 3232–3258 (2013)

    Article  MathSciNet  Google Scholar 

  12. Castella, F.: L2 solutions to the schrödinger-poisson system: existence, uniqueness, time behavior, and smoothing effects. Math Models Methods Appl. Sci. 7(8), 1051–1083 (1997)

    Article  MathSciNet  Google Scholar 

  13. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin methods, Theory, Computation and Applications. Volume11of Springer Lecture Notes in Computational Science and Engineering. Springer, New York (2000)

    Google Scholar 

  14. Catto, I., Lions, P.: Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1:, Anessary and sufficient condition for the stability of general molecular system. Comm. Partial Different. Equ. 17, 1051–1110 (1992)

    Article  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems.North-Holland Publishing Co., Amsterdam Studies in Mathematics and its Applications Vol. 4 (1978)

  16. Feng, X., Liu, H., Ma, S.: Mass- and energy-conserved numerical schemes for nonlinear schrödinger equations. Commun. Comput. Phys. arXiv:1902.10254 (2019)

  17. Hesthaven, J.S., Warburton, Tim: Nodal Discontinuous Galerkin methods: Algorithms, Analysis, and Applications. Springer Publishing Company, Incorporated 1st edn (2007)

  18. Hong, J., Ji, L., Liu, Z.: Optimal error estimates of conservative local discontinuous Galerkin method for nonlinear Schrödinger equation. Appl. Numer. Math. 127, 164–178 (2018)

    Article  MathSciNet  Google Scholar 

  19. Illner, R., Lange, H., Toomire, B., Zweifel, P.: On quasi-linear schrödinger-poisson systems. Math Methods Appl. Sci. 20 (14), 1223–1238 (1997)

    Article  MathSciNet  Google Scholar 

  20. Illner, R., Zweifel, P.F., Lange, H.: Global existence, uniqueness and asymptotic behavior of solutions of the Wigner–Poisson and schrödinger–poisson systems. Math. Methods Appl. Sci. 17, 349–376 (1994)

    Article  MathSciNet  Google Scholar 

  21. collab=A: Jungel̈ and S. Wang. Convergence of nonlinear schrödinger-poisson systems to the compressible Euler equations. Comm Partial Diff. Eqs. 28, 1005–1022 (2003)

    Article  Google Scholar 

  22. Liang, X., Khaliq, A., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrö,dinger equations. Commun Comput. Phys. 17, 510–541 (2015)

    Article  MathSciNet  Google Scholar 

  23. Lieb, E.H.: Thomas-fermi and related theories and molecules. Rev. Modern. Phs. 53, 603–641 (1981)

    Article  MathSciNet  Google Scholar 

  24. Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comp. 84, 2263–2295 (2015)

    Article  MathSciNet  Google Scholar 

  25. Liu, H., Huang, Y., Lu, W., Yi, N.: On accuracy of the mass preserving DG method to multi-dimensional schrödinger equations. IMA J. Numer. Anal. 39(2), 760–791 (2019)

    Article  MathSciNet  Google Scholar 

  26. Liu, H., Yan, J.: The Direct Discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2009)

    Article  MathSciNet  Google Scholar 

  27. Liu, H., Yan, J.: The Direct Discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    Article  MathSciNet  Google Scholar 

  28. Liu, H., Yi, N.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg-de Vries equation. J. Comput. Phys. 321, 776–796 (2016)

    Article  MathSciNet  Google Scholar 

  29. Lu, T., Cai, W., Zhang, P.W.: Conservative local discontinuous Galerkin methods for time dependent Schrödinger equation. Int. J. Numer. Anal. Mod. 2, 75–84 (2004)

    MATH  Google Scholar 

  30. Lu, W., Huang, Y., Liu, H.: Mass preserving direct discontinuous Galerkin methods for Schrödinger equations. J. Comp. Phys. 282, 210–226 (2015)

    Article  Google Scholar 

  31. Liu, H., Wen, H.R.: Error estimates of the third order Runge–Kutta alternating evolution discontinuous Galerkin method for convection-diffusion problems. ESAIM Math. Model. Numer. Anal. 52(5), 1709–1732 (2018)

    Article  MathSciNet  Google Scholar 

  32. Liu, H., Yin, P.M.: A mixed discontinuous Galerkin method without interior penalty for time-dependent fourth order problems. J. Sci. Comput. 77, 467–501 (2018)

    Article  MathSciNet  Google Scholar 

  33. Lubich, C.: On splitting methods for schrödinger–poisson and cubic nonlinear schrödinger equations. Math. Comp. 77(264), 2141–2153 (2008)

    Article  MathSciNet  Google Scholar 

  34. Markowich, P.A., Rein, G., Wolansky, G.: Existence and nonlinear stability of stationary states of the schrödinger-poisson system. J. Statist. Phys. 106(5-6), 1221–1239 (2002)

    Article  MathSciNet  Google Scholar 

  35. Riviére, B: Discontinuous galerkin methods for solving elliptic and parabolic equations society for industrial and applied mathematics (2008)

  36. Shu, C.W.: Discontinuous Galerkin Methods: General Approach and Stability. Numerical Solutions of Partial Differential Equations. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Advanced Courses in Mathematics CRM Barcelona, pp 149–201. Basel, Birkhauser (2009)

  37. Wang, H., Liang, Z., Liu, R.: A splitting Chebyshev collocation method for Schrödinger–Poisson system. Comp. Appl. Math. 37, 5034–5057 (2018)

    Article  Google Scholar 

  38. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for nonlinear Schrö,dinger equations. J Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  Google Scholar 

  39. Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for higher order wave equations. SIAM. J. Numer. Anal. 50(1), 72–104 (2012)

    Article  Google Scholar 

  40. Yi, N., Huang, Y., Liu, H.: A conservative discontinuous Galerkin method for nonlinear electromagnetic Schrö,dinger equations. SIAM J. Sci Comput. 41(6), B138–B1411 (2019)

    Article  Google Scholar 

  41. Zhang, R., Yu, X., Feng, T.: Solving coupled nonlinear schrödinger equations via a direct discontinuous Galerkin method. Chinese Phys. B 21, 30202–1–30202-5 (2012)

    Google Scholar 

  42. Zhang, R., Yu, X., Li, M., Li, X.: A conservative local discontinuous Galerkin method for the solution of nonlinear Schrö,dinger equation in two dimensions. Sci. China Math. 60, 2515–2530 (2017)

    Article  MathSciNet  Google Scholar 

  43. Zhang, R., Yu, X., Zhao, G.: A direct discontinuous Galerkin Method for Nonlinear Schrö,dinger Equation (in Chinese). Chinese J Comput. Phys. 29, 175–182 (2012)

    Google Scholar 

Download references

Funding

Yi’s research was partially supported by NSFC Project (11671341, 11971410) and Hunan Provincial NSF Project (2019JJ20016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, N., Liu, H. A mass- and energy-conserved DG method for the Schrödinger-Poisson equation. Numer Algor 89, 905–930 (2022). https://doi.org/10.1007/s11075-021-01139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01139-0

Keywords

Mathematics Subject Classification (2010)

Navigation