Skip to main content
Log in

The strong convergence and stability of explicit approximations for nonlinear stochastic delay differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper focuses on explicit approximations for nonlinear stochastic delay differential equations (SDDEs). Under less restrictive conditions, the truncated Euler-Maruyama (TEM) schemes for SDDEs are proposed, which numerical solutions are bounded in the q th moment for q ≥ 2 and converge to the exact solutions strongly in any finite interval. The 1/2 order convergence rate is yielded. Furthermore, the long-time asymptotic behaviors of numerical solutions, such as stability in mean square and \(\mathbb {P}-1\), are examined. Several numerical experiments are carried out to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arriojas, M., Hu, Y., Mohammed, S.-E., Pap, G.: A delayed black and scholes formula. Stoch. Anal. Appl. 25(2), 471–492 (2007)

    Article  MathSciNet  Google Scholar 

  2. Baker, C.T.H., Buckwar, E.: Numerical analysis of explicit one-step methods for stochastic delay differential equations. LMS J. Comput. Math. 3, 315–335 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bao, J., Yin, G., Yuan, C.: Asymptotic analysis for functional stochastic differential equations springer (2016)

  4. Buckwar, E.: Introduction to the numerical analysis of stochastic delay diffierential equations. Numerical analysis 2000, Vol. VI, Ordinary differential equations and integral equations. J. Comput. Appl. Math. 125(1-2), 297–307 (2000)

    Article  MathSciNet  Google Scholar 

  5. Cong, Y., Zhan, W., Guo, Q: The partially truncated Euler-Maruyama method for highly nonlinear stochastic delay differential equations with Markovian Switching. International Journal of Computational Methods 17(6), 1950014, 32 (2020)

    Article  MathSciNet  Google Scholar 

  6. Dareiotis, K., Kumar, C., Sabanis, S: On tamed Euler approximations of SDEs driven by lévy noise with applications to delay equations. SIAM J. Numer. Anal. 54(3), 1840–1872 (2016)

    Article  MathSciNet  Google Scholar 

  7. Eurich, C.W., Milton, J.G.: Noise-induced transitions in human postural sway. Phys. Rev. E. 54(6), 6681–6684 (1996)

    Article  Google Scholar 

  8. Guo, Q., Mao, X., Yue, R: The truncated Euler-Maruyama method for stochastic differential delay equations. Numerical Algorithms 78(2), 599–624 (2018)

    Article  MathSciNet  Google Scholar 

  9. Gyöngy, I., Sabanis, S.: A note on Euler approximations for stochastic differential equations with delay. Appl. Math. Optim. 68(3), 391–412 (2013)

    Article  MathSciNet  Google Scholar 

  10. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  Google Scholar 

  11. Huang, C.: Mean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equations. J. Comput. Appl. Math. 259(part A), 77–86 (2014)

    Article  MathSciNet  Google Scholar 

  12. Huang, C., Gan, S., Wang, D.: Delay-dependent stability analysis of numerical methods for stochastic delay differential equations. J. Comput. Appl. Math. 236(14), 3514–3527 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Memoirs of the American Mathematical Society, 236(1112), v + 99 pp. ISBN: 978-1-4704-0984-5 (2015)

  14. Hutzenthaler, M., Jentzen, A: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients. The Annals of Probability 48(1), 53–93 (2020)

    Article  MathSciNet  Google Scholar 

  15. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proceedings of The Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 467 (2130), 1563–1576 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Ann. Appl. Probab. 23(5), 1913–1966 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations Springer-Verlag (1992)

  19. Kumar, C., Sabanis, S.: Strong convergance of Euler approximations of stochastic differential equations with delay under local Lipschitz condition. Stoch. Anal. Appl. 32(2), 207–228 (2014)

    Article  MathSciNet  Google Scholar 

  20. Li, M., Huang, C.: Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition. Appl. Math. Comput. 366(124733), 12 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Li, X., Mao, X: The improved LaSalle-type theorems for stochastic differential delay equations. Stoch. Anal. Appl. 30(4), 568–589 (2012)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Mao, X., Yin, G.: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in p th moment and stability. IMA J. Numer. Anal. 39(4), 2168 (2019)

    Article  MathSciNet  Google Scholar 

  23. Mao, X.: Stochastic Differential Equations and Applications. Second edition. Horwood Publishing Limited, Cambridge (2008)

    Book  Google Scholar 

  24. Mao, X: The truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290, 370–384 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mao, X.: Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 296, 362–375 (2016)

    Article  MathSciNet  Google Scholar 

  26. Mao, X., Rassias, M.J.: Khasminskii-type theorems for stochastic differential delay equations. Stoch. Anal. Appl. 23(5), 1045–1069 (2005)

    Article  MathSciNet  Google Scholar 

  27. Mao, X., Sabanis, S.: Numerical solutions of stochastic differential delay equations under local Lipschitz condition. J. Comput. Appl. Math. 151 (1), 215–227 (2003)

    Article  MathSciNet  Google Scholar 

  28. Mao, X., Yuan, C.: Stochastic differential equations with markovian switching imperial college press (2006)

  29. Niu, Y., Burrage, K., Zhang, C.: A derivative-free explicit method with order 1.0 for solving stochastic delay differential equations. J. Comput. Appl. Math. 253, 51–65 (2013)

    Article  MathSciNet  Google Scholar 

  30. Sabanis, S.: Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26(4), 2083–2105 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wang, X., Gan, S: The improved split-step backward Euler method for stochastic differential delay equations. Int. J. Comput. Math. 88(11), 2359–2378 (2011)

    Article  MathSciNet  Google Scholar 

  32. Wu, F., Mao, X., Kloeden, P.E.: Discrete Razumikhin-type technique and stability of the Euler-Maruyama method to stochastic functional differential equations. Discrete and Continnous Dynamical Systems 33(2), 885–903 (2013)

    Article  MathSciNet  Google Scholar 

  33. Wu, F., Mao, X., Szpruch, L.: Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numer. Math. 115 (4), 681–697 (2010)

    Article  MathSciNet  Google Scholar 

  34. Yang, H., Li, X.: Explicit approximations for nonlinear switching diffusion systems in finite and infinite horizons. Journal of Differential Equations 265(7), 2921–2967 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zhang, W., Yin, X., Song, M.H., Liu, M.Z.: Convergence rate of the truncated Milstein method of stochastic differential delay equations. Appl. Math. Comput. 357, 263–281 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zhao, J., Yi, Y., Xu, Y.: Strong convergence and stability of the split-step theta method for highly nonlinear neutral stochastic delay integro differential equation. Appl. Numer. Math. 157, 385–404 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the associated editor and referee for the helpful comments and suggestions.

Funding

The research of Junhao Hu was supported by the National Natural Science Foundation of China (No. 61876192). The research of Xiaoyue Li was supported by the National Natural Science Foundation of China (No. 11971096), the Natural Science Foundation of Jilin Province (No. YDZJ202101ZYTS154), the Education Department of Jilin Province (No. JJKH20211272KJ), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyue Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Hu, J., Gao, S. et al. The strong convergence and stability of explicit approximations for nonlinear stochastic delay differential equations. Numer Algor 89, 855–883 (2022). https://doi.org/10.1007/s11075-021-01137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01137-2

Keywords

Navigation