Skip to main content
Log in

On the unitary block-decomposability of 1-parameter matrix flows and static matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

A Correction to this article was published on 27 October 2021

This article has been updated

Abstract

For general complex or real 1-parameter matrix flows A(t)n, n and for static matrices \(A \in \mathbb {C}_{n,n}\) alike, this paper considers ways to decompose matrix flows and single matrices globally via one constant matrix similarity Cn, n as A(t) = C− 1 ⋅ diag(A1(t),...,A(t)) ⋅ C or A = C− 1 ⋅diag(A1,...,A) ⋅ C with each diagonal block Ak(t) or Ak square and their number exceeding 1 if this is possible. The theory behind our proposed algorithm is elementary and uses the concept of invariant subspaces for the MATLAB eig computed ‘eigenvectors’ of one associated flow matrix B(ta) to find the coarsest simultaneous block structure for all flow matrices B(tb). The method works efficiently for all time-varying matrix flows A(t), be they real or complex, normal, with Jordan structures or repeated eigenvalues, differentiable, continuous, or discontinuous in t, and likewise for all fixed entry matrices A. Our intended aim is to discover unitarily diagonal-block decomposable flows as they originate in real-time from sensor given data for time-varying matrix problems that are unitarily invariant. Then, the complexities of their numerical treatments decrease by adopting ‘divide and conquer’ methods for their diagonal blocks. In the process, we discover and study k-normal fixed entry matrix classes that can be decomposed under unitary similarities into various k-dimensional block-diagonal forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Bavely, C.A., Stewart, G.W.: An algorithm for computing reducing subspaces by block-diagonalization. SIAM J. Numer. Anal. 16, 359–367 (1979)

    Article  MathSciNet  Google Scholar 

  2. Dieci, L., Eirola, T.: On smooth decompositions of matrices. SIAM J. Matrix Anal. Appl. 20, 800–819 (1999)

    Article  MathSciNet  Google Scholar 

  3. Dieci, L., Friedman, M.J.: Continuation of invariant subspaces. Numer. Linear Algebra Appl. 8, 317–327 (2001). https://doi.org/10.1002/nla.245

    Article  MathSciNet  Google Scholar 

  4. Dieci, L., Papini, A.: Continuation of eigen-decompositions. Futur. Gener. Comput. Syst. 19, 1125–1137 (2003)

    Article  Google Scholar 

  5. Dieci, L., Pugliese, A.: Singular values of two-parameter matrices: an algorithm to accurately to find their intersections. Math. Comput. Simul. 79, 1255–1269 (2008)

    Article  MathSciNet  Google Scholar 

  6. Dieci, L., Gasparo Grazia, M., Papini, A., Pugliese, A.: Locating coalescing singular values of large two-parameter matrices. Math. Comput. Simul. 81, 996–1005 (2011)

    Article  MathSciNet  Google Scholar 

  7. Dieci, L., Pugliese, A.: Hermitian matrices depending on three parameters: coalescing eigenvalues. Linear Algebra Appl. 436, 4120–4142 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dieci, L., Papini, A., Pugliese, A.: Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters. SIAM J. Matrix Anal. Appl. 34, 519–541 (2013). [MR 3054590], https://doi.org/10.1137/120898036

    Article  MathSciNet  Google Scholar 

  9. Embree, M., Keeler, B.: Pseudospectra of matrix pencils for transient analysis of differential-algebraic equations. SIAM J. Matrix Anal. Appl. 38, 1028–1054 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hund, F.H.: Zur Deutung der Molekelspektren. I. Z. Phys. 40, 742–764 (1927)

    Article  MathSciNet  Google Scholar 

  11. Johnson, C.R.: Numerical determination of the field of values of a general complex matrix. SIAM J. Numer. Anal. 15, 595–602 (1978). https://doi.org/10.1137/0715039

    Article  MathSciNet  Google Scholar 

  12. Latter, R.: Atomic energy levels for the Thomas-Fermi and thomas-feIIlli-dirac potential. Phys. Rev. 99, 510–519 (1955)

    Article  Google Scholar 

  13. Loisel, S., Maxwell, P.: Path-following method to determine the field of values of a matrix at high accuracy. SIAM J. Matrix Anal. Appl. 39, 1726–1749 (2018). https://doi.org/10.1137/17M1148608

    Article  MathSciNet  Google Scholar 

  14. Murota, K., Kanno, Y., Kojima, M., Kojima, S.: A numerical algorithm for block-diagonal decomposition of matrix – algebras with application to semidefinite programming. Japan J. Indust. Appl. Math. 27, 125–160 (2010). https://doi.org/10.1007/s13160-010-0006-9

    Article  MathSciNet  Google Scholar 

  15. von Neumann, J., Wigner, E.P.: On the behavior of the eigenvalues of adiabatic processes. Phys. Z. 30, 467–470 (1929). reprinted in Quantum Chemistry, Classic Scientific Papers, Hinne Hettema (editor), World Scientific (2000), p. 25–31

    Google Scholar 

  16. Sibuya, Y.: Some global properties of matrices of functions of one variable. Math. Ann. 161, 67–77 (1965)

    Article  MathSciNet  Google Scholar 

  17. Taussky, O., Todd, J.: Another look at the matrix of Marc Kac. Lin. Alg. Appl. 150, 341–360 (1991)

    Article  Google Scholar 

  18. Trefethen, L.N., Embree, M.: Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton University Press, ISBN 9780691119465, 624 (2005)

  19. Uhlig, F.: Coalescing eigenvalues and crossing eigencurves of 1-parameter matrix flows. SIAM J Matrix Anal. Appl. 41, 1528–1545 (2020). https://doi.org/10.1137/19M1286141

    Article  MathSciNet  Google Scholar 

  20. Uhlig, F.: The MATLAB codes for plotting and assessing matrix and matrix flow block-diagonalizations are available at http://webhome.auburn.edu/~uhligfd/m_files/MatrixflowDecomp/

  21. Uhlig, F.: Constructing the Field of Values of Decomposable and General Square Matrices, submitted, 12 p. arXiv:https://arxiv.org/abs/2006.01241

  22. Wilkinson, J.H.: Rounding Errors in Algebraic Processes, [first edition 1963]. Dover Publ. ISBN 978-0486679990, 161 (1994)

Download references

Acknowledgements

I thank the referees and editors who helped with the paper and shared their ideas and knowledge with me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Uhlig.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhlig, F. On the unitary block-decomposability of 1-parameter matrix flows and static matrices. Numer Algor 89, 529–549 (2022). https://doi.org/10.1007/s11075-021-01124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01124-7

Keywords

AMS Subject Classification

Navigation