Skip to main content
Log in

Numerical blow-up analysis of the explicit L1-scheme for fractional ordinary differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper deals with the blow-up behavior of numerical solutions to nonlinear fractional ordinary differential equations with a dissipative term. Based on the positivity preservation of the explicit L1-scheme, it is shown that for sufficiently small initial values, numerical solutions exist globally. Whereas for large initial values, numerical solutions with a suitable adaptive step strategy blow up in finite time. Finally, some numerical experiments are provided for verifying the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal, R., Benchohra, B., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bakkyaraj, T., Sahadevan, R.: Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative. Nonlinear Dyn. 80, 447–455 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z.B., Chen, Y.Q., Lian, H.R., Sun, S.J.: On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 17, 1175–1187 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cabada, A., Kisela, T.: Existence of positive periodic solutions of some nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 50, 51–67 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cho, C.: On the convergence of numerical blow-up time for a second order nonlinear ordinary differential equation. Appl. Math. Lett. 24, 49–54 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cho, C.: Numerical detection of blow-up: a new sufficient condition for blow-up. Jpn. J. Indust. Appl. Math. 33, 81–98 (2016)

    Article  MathSciNet  Google Scholar 

  7. Dorsaf, H., Ferdaous, K., Rafika, L.: Blowing-up solutions global solutions to a fractional differential equation. Fract. Differ. Calc. 4, 45–53 (2014)

    Article  MathSciNet  Google Scholar 

  8. Feng, Y.Y., Li, L., Liu, J.G., Xu, X.Q.: Continuous and discrete one dimensional autonomous fractional ODEs. Discrete Cont. Dyn-B 23, 3109–3135 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Furati, K.M., Kirane, M.: Necessary conditions for the existence of global solutions to systems of fractional differential equations. Fract. Calc. Appl. Anal. 11, 281–298 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  11. Jafarian, A., Mokhtarpour, M., Baleanu, D.: Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput. Applic. 28, 765–773 (2017)

    Article  Google Scholar 

  12. Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

    Article  MathSciNet  Google Scholar 

  13. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  14. Kadem, A., Kirane, M., Kirk, C.M., Olmstead, W.E.: Blowing-up solutions to systems of fractional differential and integral equations with exponential non-linearities. IMA J. Appl. Math. 79, 1077–1088 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kassim, M., Furati, K., Tatar, N.: Asymptotic behavior of solutions to nonlinear fractional differential equations. Math. Model. Anal. 21, 610–629 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential equations. Elsevier, USA (2006)

    MATH  Google Scholar 

  17. Kirane, M., Medved, M., Tatar, N.-e.: On the nonexistence of blowing-up solutions to a fractional functional-differential equation. Georgian Math. J. 19, 127–144 (2012)

    Article  MathSciNet  Google Scholar 

  18. Li, W., Wang, S., Rehbock, V.: A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numer. Alg. Ctrl. Optim. 7, 273–287 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Li, B., Xie, X., Zhang, S.: A new smoothness result for Caputo-type fractional ordinary differential equations. Appl. Math. Comput. 349, 408–420 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liao, H., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Num. Anal. 57, 218–237 (2019)

    Article  Google Scholar 

  21. Liao, H., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  22. Miller, K., Ross, B.: An introduction to the fractional calculus and differential equations. Wiley, New York (1993)

    MATH  Google Scholar 

  23. Nakagawa, J, Sakamoto, K., Yamamoto, M.: Overview to mathematical analysis for fractional diffusion equations-new mathematical aspects motivated by industrial collaboration. J. Math. Ind. 2A, 99–108 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Nakagawa, T.: Blowing up of a finite difference solution to ut = uxx + u2. Appl. Math. Optim. 2, 337–350 (1976)

    Article  Google Scholar 

  25. Owolabi, K., Atangana, A.: Chaotic behaviour in system of noninteger-order ordinary differential equations. Chaos Solitons Fractals 115, 362–370 (2018)

    Article  MathSciNet  Google Scholar 

  26. Podlubny, I.: Fractional differential equations, Mathematics in Science and Engineering. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  27. Vergara, V., Zacher, R.: Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations. J. Evol. Equ. 17, 599–626 (2017)

    Article  MathSciNet  Google Scholar 

  28. Yang, Z., Zhang, J., Zhao, C.: Numerical blow-up analysis of linearly implicit Euler method for nonlinear parabolic integro-differential equations. J. Comput. Appl. Math. 358, 343–358 (2019)

    Article  MathSciNet  Google Scholar 

  29. Zhao, K., Gong, P.: Existence of positive solutions for a class of higher-order caputo fractional differential equation. Qual. Theory Dyn. Syst. 14, 157–171 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (NSFC 11771128 and NSFC 11871179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanwen Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yang, Z. & Zhao, C. Numerical blow-up analysis of the explicit L1-scheme for fractional ordinary differential equations. Numer Algor 89, 451–463 (2022). https://doi.org/10.1007/s11075-021-01121-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01121-w

Keywords

Navigation