Skip to main content
Log in

Generating the Laguerre expansion coefficients by solving a one-dimensional transport equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new approach for calculating Laguerre expansion coefficients is proposed. In solving applied problems, initial data may be specified as time series with a constant discretization step. In this case, the use of quadratures of high-order accuracy is limited due to their instability. In order to overcome these difficulties, this paper considers an approach in which algorithms are proposed to calculate integral Laguerre transform by solving a one-dimensional transport equation. In contrast to the direct calculation of improper integrals of rapidly oscillating functions, these procedures make it possible to calculate the expansion coefficients of a Laguerre series expansion with better stability, higher accuracy, and less computational burden. The numerical experiments have shown that the methods are economical in terms of operation count, stable, and have reasonable accuracy in practical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. Olver, F. W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F. Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds).

  2. Weeks, W.T.: Numerical inversion of Laplace transforms using Laguerre functions. J. ACM 13(3), 419–429 (1966)

    Article  MathSciNet  Google Scholar 

  3. Fatyanov, A.G., Terekhov, A.V.: High-performance modeling acoustic and elastic waves using the parallel dichotomy algorithm. J. Comp. Phys. 230(5), 1992–2003 (2011)

    Article  MathSciNet  Google Scholar 

  4. Terekhov, A.V.: A fast parallel algorithm for solving block-tridiagonal systems of linear equations including the domain decomposition method. Parallel Comput. 39(6-7), 245–258 (2013)

    Article  MathSciNet  Google Scholar 

  5. Terekhov, A.V.: Spectral-difference parallel algorithm for the seismic forward modeling in the presence of complex topography. J. Appl. Geophys. 115 (0), 206–219 (2015)

    Article  Google Scholar 

  6. Mikhailenko, B.G.: Spectral Laguerre method for the approximate solution of time dependent problems. Appl. Math. Lett. 12, 105–110 (1999)

    Article  MathSciNet  Google Scholar 

  7. Mikhailenko, B.G., Mastryukov, A.F.: Numerical solution of Maxwell’s equations for anisotropic media using the Laguerre transform. Russ. Geol. Geophys. 49, 621–627 (2008)

    Article  Google Scholar 

  8. Colton, D., Wimp, J.: Analytic solutions of the heat equation and some formulas for Laguerre and Hermite polynomials. Compl Var Theory Appl Int J 3(4), 397–412 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Jo, J.A., et al.: Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions. J. Biomed. Opt. 11(2) (2006)

  10. Terekhov, A.V.: The Laguerre finite difference one-way equation solver. Comput. Phys. Commun. 214, 71–82 (2017)

    Article  MathSciNet  Google Scholar 

  11. Abate, J., Choudhury, G., Whitt, W.: On the Laguerre method for numerically inverting Laplace transforms. Informs J. Comput. 8(4), 413–427 (1996)

    Article  Google Scholar 

  12. Strain, J.: A fast Laplace transform based on Laguerre functions. Math. Comput. 58(197), 275–283 (1992)

    Article  MathSciNet  Google Scholar 

  13. Weber, H.: Numerical computation of the Fourier transform using Laguerre functions and the Fast Fourier Transform. Numer. Math. 36(2), 197–209 (Jun 1980)

    Article  MathSciNet  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Samarskij, A.A., Nikalayev, E.S.: Numerical methods for grid equations. Birkhauser, Verlag (1989)

  16. Litko, J.R.: Gi/g/1 Interdeparture time and queue-length distributions via the Laguerre transform. Queueing Syst. 4(4), 367–381 (Dec 1989)

    Article  MathSciNet  Google Scholar 

  17. Glaser, A., Liu, X., Rokhlin, V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29(4), 1420–1438 (2007)

    Article  MathSciNet  Google Scholar 

  18. Gil, A., Segura, J., Temme, N.M.: Fast, reliable and unrestricted iterative computation of Gauss–Hermite and Gauss–Laguerre quadratures. Numer. Math. 143(3), 649–682 (2019)

    Article  MathSciNet  Google Scholar 

  19. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  Google Scholar 

  20. Kythe, P.K., Schaferkotter, M.R.: Handbook of computational methods for integration. Chapman and hall/CRC (2004)

  21. Davis, P.J., Rabinowitz, P.: Methods of numerical integration dover books on mathematics series. Dover Publications (2007)

  22. Huybrechs, D.: Stable high-order quadrature rules with equidistant points. J. Comput. Appl. Math. 231(2), 933–947 (2009)

    Article  MathSciNet  Google Scholar 

  23. Filon, L.N.G.: On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. 49, 38–47 (1928)

    MATH  Google Scholar 

  24. Luke, Y.L.: On the computation of oscillatory integrals. Math. Proc. Camb. Philos. Soc. 50(2), 269–277 (1954)

    Article  MathSciNet  Google Scholar 

  25. Sumita, U., Kijima, M.: Theory and algorithms of the Laguerre transform, part I:Theory. J. Oper. Res. Soc. Jpn. 31(4), 467–495 (1988)

    MATH  Google Scholar 

  26. Hille, E.: Bilinear formulas in the theory of the transformation of laplace. Compos. Math. 6, 93–102 (1939)

    MathSciNet  MATH  Google Scholar 

  27. Keilson, J., Nunn, W., Sumita, U.: The bilateral Laguerre transform. Appl. Math. Comput. 8(2), 137–174 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Temme, N.M.: Asymptotic estimates for Laguerre, polynomials. Z. Angewandte Math. Phys. 41(1), 114–126 (1990)

    Article  MathSciNet  Google Scholar 

  29. Galȧntai, A.: The theory of Newton’s method. J. Comput. Appl. Math. 124(1-2), 25–44 (December 2000)

    Article  MathSciNet  Google Scholar 

  30. Szegö, G.: Orthogonal Polynomials. American Math. Soc: Colloquium Publication of American Mathematical Society (1975)

  31. Nussbaumer, H.J.: Fast fourier transform and convolution algorithms. Springer, Berlin (1982)

  32. Gil, A., Segura, J., Temme, N.M.: Efficient computation of Laguerre polynomials. Comput. Phys. Commun. 210, 124–131 (2017)

    Article  MathSciNet  Google Scholar 

  33. Shen, J., Tang, T., Wang, L.-L.: Spectral methods. Springer, Berlin (2011)

  34. Paffenholz, J., McLain, B., Zaske, J., Keliher, P.J.: Subsalt multiple attenuation and imaging: Observations from the Sigsbee2B synthetic dataset, chapter 538, vol. 202, pp. 2122–2125. Society of Exploration Geophysicists

Download references

Funding

The numerical implementation of proposed algorithms was carried out under state contract with ICMMG SB RAS (0251-2021-0004), and the study of proposed algorithms was financially supported by RFBR and Novosibirsk region (Project No. 20-41-540003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew V. Terekhov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhov, A.V. Generating the Laguerre expansion coefficients by solving a one-dimensional transport equation. Numer Algor 89, 303–322 (2022). https://doi.org/10.1007/s11075-021-01115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01115-8

Keywords

Navigation