Skip to main content
Log in

Superconvergence analysis of BDF-Galerkin FEM for nonlinear Schrödinger equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A nonlinear iteration scheme for nonlinear Schrödinger equation with 2-step backward differential formula (BDF) finite element method (FEM) is proposed. Energy stability is testified for the constructed scheme, which leads to the boundedness of \(\|{U_{h}^{n}}\|_{0}\) and \(\sqrt {\tau }\|\nabla {U_{h}^{n}}\|_{0}\). Auxiliary equation known as a time-discrete system is constructed to get rid of the restriction of τ. The solutions of the time-discrete equation in H1-norm is deduced. On the one hand, \(\sqrt {\tau }\|\nabla U^{n}\|_{0}\) reduces to the temporal error in H2-norm. On the other hand, with the help of the boundedness about \(\sqrt {\tau }\|\nabla {U_{h}^{n}}\|_{0}\), the unconditional optimal estimate for spatial error is derived. Without any restriction of the time step, \(\|{U_{h}^{n}}\|_{0,\infty }\) is bounded through surmounting the difficulty of nonlinear term. By taking difference between two time levels n and n − 1 of the error equation, an unconditional superconvergence estimate is derived. At last, global superconvergence result is achieved through the known interpolated postprocessing technique. Here, τ is the time step, and Un and \({U_{h}^{n}}\) denote the solutions of the time-discrete system and the finite element approximation equation, respectively. Furthermore, by introducing modified mass and energy functions, the numerical scheme is proved to preserve the total mass and energy in the discrete senses. Finally, numerical results are given to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bao, W., Du, Q., Zhang, Y.: Dynamics of rotating Bose–Einstein condensates and its efficient and accurate numerical computation. SIAM J. Appl. Math. 66(3), 758–786 (2006)

    Article  MathSciNet  Google Scholar 

  2. Makhankov, V. G.: Dynamics of classical solitons (in non-integrable systems). Phys. Lett. C 35(1), 1–128 (1978)

    Google Scholar 

  3. Sulem, C., Sulem, P-L: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)

    MATH  Google Scholar 

  4. Akrivis, G.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    Article  MathSciNet  Google Scholar 

  5. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    Article  MathSciNet  Google Scholar 

  6. Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Comm. 181(1), 43–51 (2010)

    Article  MathSciNet  Google Scholar 

  7. Zhang, L., Chang, Q.: A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 145 (2–3), 603–612 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Liao, H. L., Sun, Z. Z., Shi, H. S.: Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer. Anal. 47(6), 4381–4401 (2010)

    Article  MathSciNet  Google Scholar 

  9. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)

    Article  MathSciNet  Google Scholar 

  11. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)

    Article  MathSciNet  Google Scholar 

  12. Akrivis, G. D., Dougalis, V. A., Karakashian, O. A.: On fully-discrete Galerkin methods of second-order accuracy for the nonlinear Schrödinger equation. Numer. Math. 59(1), 31–53 (1991)

    Article  MathSciNet  Google Scholar 

  13. Wang, J.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrodinger̈ equation. 60(2), 390–407 (2014)

  14. Shi, D.Y., Liao, X., Wang, L.L.: Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation. Appl. Math. Comput. 289, 298–310 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Shi, D., Wang, J.: Unconditional superconvergence analysis of a Crank–Nicolson Galerkin FEM for nonlinear Schrodinger̈ equation. J. Sci. Comput. 72 (3), 1093–1118 (2017)

    Article  MathSciNet  Google Scholar 

  16. Wang, J., Huang, Y., Tian, Z., Zhou, J.: Superconvergence analysis of finite element method for the time-dependent Schrödinger equation. Comput. Math. Appl. 71(10), 1960–1972 (2016)

    Article  MathSciNet  Google Scholar 

  17. Cai, W., Li, J., Chen, Z.: Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation. J. Comput. Appl. Math. 331, 23–41 (2018)

    Article  MathSciNet  Google Scholar 

  18. Wu, L: Two-grid mixed finite-element methods for nonlinear Schrödinger equations. Numer. Methods Partial Differ. Equ. 28(1), 63–73 (2012)

    Article  Google Scholar 

  19. Hu, H.: Two-grid method for two-dimensional nonlinear Schrödinger equation by mixed finite element method. Numer. Methods Partial Differ. Equ. 34(2), 385–400 (2018)

    Article  Google Scholar 

  20. Karakashian, O., Makridakis, M. C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)

    Article  Google Scholar 

  21. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–77 (2005)

    Article  MathSciNet  Google Scholar 

  22. Hong, J., Ji, L., Liu, Z.: Optimal error estimates of conservative local discontinuous Galerkin method for nonlinear Schrödinger equation. Appl. Numer. Math. 127(2018), 164–178 (2016)

    MATH  Google Scholar 

  23. Castillo, P., Gómez, S.: Conservative super-convergent and hybrid discontinuous Galerkin methods applied to nonlinear Schrödinger equations. Appl. Math. Comput. 371(C), 124950 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  Google Scholar 

  25. Kong, L., Zhang, J., Ying, C., Duan, Y., Hong, H.: Semi-explicit symplectic partitioned Runge-Kutta fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations. Comput. Phys. Commun. 181(8), 1369–1377 (2010)

    Article  Google Scholar 

  26. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10(3), 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Gao, H.: Unconditional optimal error estimates of BDF–Galerkin FEMs for nonlinear thermistor equations. J. Sci. Comput. 66(2), 504–527 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  29. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  Google Scholar 

  30. Shi, D., Wang, F., Fan, M., Zhao, Y.: A new approach of the lowest-order anisotropic mixed finite element high-accuracy analysis for nonlinear sine-Gordon equations. Math. Numer. Sin. 37(2), 148–161 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 11801527), Key Scientific Research Projects of Higher Eduction of Henan (Nos. 19A110034, 20A110030), the Doctoral Starting Foundation of Pingdingshan University (No. PXY-BSQD-2019001), China Postdoctoral Science Foundation (No. 2018M632791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, M. & Zhang, Y. Superconvergence analysis of BDF-Galerkin FEM for nonlinear Schrödinger equation. Numer Algor 89, 195–222 (2022). https://doi.org/10.1007/s11075-021-01111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01111-y

Keywords

Navigation