Skip to main content
Log in

The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, four linearly energy-preserving finite difference methods (EP-FDMs) are designed for two-dimensional (2D) nonlinear coupled sine-Gordon equations (CSGEs) and coupled Klein-Gordon equations (CKGEs) using the invariant energy quadratization method (IEQM). The 1st EP-FDM is designed by first introducing two auxiliary functions to rewrite the original problems into the new system only including the 1st-order temporal derivatives, and then applying Crank-Nicolson (C-N) method and 2nd-order centered difference methods for the discretizations of temporal and spatial derivatives, respectively. The 2nd EP-FDM is directly devised based on the uses of 2nd-order centered difference methods to approximate 2nd-order temporal and spatial derivatives. The 1st and 2nd EP-FDMs need numerical solutions of the algebraic system with variable coefficient matrices at each time level. By modifying the 2nd EP-FDM, the 3rd EP-FDM, which is implemented by computing the system of algebraic equations with constant coefficient matrices at each time level, is developed. Finally, an energy-preserving alternating direction implicit (ADI) finite difference method (EP-ADI-FDM) is established by a combination of ADI method with the 3rd EP-FDM. By using the discrete energy method, it is shown that they are all uniquely solvable, and their solutions have a convergent rate of \({\mathscr{O}}(\varDelta t^{2}+{h^{2}_{x}}+{h^{2}_{y}})\) in H1-norm and satisfy the discrete conservative laws. Numerical results show the efficiency and accuracy of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Segal, I.: Nonlinear partial differential equations in quantum field theory. Proc. Symp. Appl. Math. AMS 17, 210–226 (1965)

    Article  MathSciNet  Google Scholar 

  2. Biswas, A., Kara, A.H., Moraru, L., Bokhari, A.H., Zaman, F.D.: Conservation laws of coupled Klein-Gordon equations with cubic and power law nonlinearities. Proceedings of the Romanian Academy, Series A 15, 123–129 (2014)

    MathSciNet  Google Scholar 

  3. Liu, S., Fu, Z., Liu, S., Wang, Z.: The periodic solutions for a class of coupled nonlinear Klein-Gordon equations. Phys. Lett. A 323, 415–420 (2004)

    Article  MathSciNet  Google Scholar 

  4. Xiao, W., Ping, Y.: Global solutions and finite time blow up for some system of nonlinear wave equations. Appl. Math. Comput. 219, 3754–3768 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Ferreira, J.D.S.: Asymptotic behavier of the solutions of a nonlinear system of Klein-Gordon equations. Nonlinear Anal.: TMA 13, 1115–1126 (1989)

    Article  Google Scholar 

  6. Xu, Z., Dong, X., Yuan, Y.: Error estimates in the energy space for Gautschi-type integrator spectral discretization for coupled nonlinear Klein-Gordon equatons. J. Comput. Appl. Math. 292, 402–416 (2016)

    Article  MathSciNet  Google Scholar 

  7. Deng, D., Liang, D.: The energy preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions. Appl. Numer. Math. 151, 172–198 (2020)

    Article  MathSciNet  Google Scholar 

  8. Khusnutdinova, K.R., Pelinovsky, D.E.: On the exchange of energy in coupled Klein–Gordon equations. Wave Motion 38, 1–10 (2003)

    Article  MathSciNet  Google Scholar 

  9. Kontorova, T.A., Frenkel, Y.I.: On the theory of plastic deformation and twinning I, II. Zhurnal Eksperimental’noii Teoreticheskoi Fiziki 8(89-95), 1340–1368 (1938)

    MATH  Google Scholar 

  10. Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998)

    Article  MathSciNet  Google Scholar 

  11. Yomosa, S.: Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A 27, 2120–2125 (1983)

    Article  MathSciNet  Google Scholar 

  12. Salas, A.H.: Exact solutions of coupled sine-Gordon equations. Nonlinear Anal.: RWA 11, 3930–3935 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method. J. Morden Optics 65, 361–364 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ekici, M., Zhou, Q., Sonmezoglua, A., Mirzazadehc, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Optik 136, 435–444 (2017)

    Article  Google Scholar 

  15. Ilati, M., Dehghan, M.: The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52, 99–109 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kumar, K.H., Vijesh, V.A.: Chebyshev wavelet quasilinearization scheme for coupled nonlinear sine-Gordon equations. J. Comput. Nonlinear Dynam. 12, 011018 (2017)

    Article  Google Scholar 

  17. Deng, D.: Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method. Numer. Func. Anal. Opt. 40(9), 1053–1079 (2019)

    Article  MathSciNet  Google Scholar 

  18. Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)

    Article  MathSciNet  Google Scholar 

  19. Strauss, W., Vazque, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    Article  MathSciNet  Google Scholar 

  20. Li, S., Vu-Quoc, L.: Finite difference calculus structure of a class of algorithm for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  Google Scholar 

  21. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)

    Article  MathSciNet  Google Scholar 

  22. Yan, J., Zhang, Z.: New energy-preserving schemes using Hamiltonian boundary value and Fourier Pseudospectral methods for the numerical solution of “good” Boussinesq equation. Comput. Phys. Communications 201, 33–42 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yan, J., Zhang, Q., Zhang, Z., Liang, D.: A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation. Numer. Algor. 74, 659–674 (2017)

    Article  MathSciNet  Google Scholar 

  24. Cai, W., Li, H., Wang, Y.: Partitioned averaged vector field methods. J. Comput. Phys. 370, 25–42 (2018)

    Article  MathSciNet  Google Scholar 

  25. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)

    Article  MathSciNet  Google Scholar 

  26. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)

    Article  MathSciNet  Google Scholar 

  27. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  Google Scholar 

  28. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl Sci. 27, 1993–2030 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Engrg. 318, 803–825 (2017)

    Article  MathSciNet  Google Scholar 

  30. Liu, Z., Li, X.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algor. 85, 107–132 (2020)

    Article  MathSciNet  Google Scholar 

  31. Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)

    Article  MathSciNet  Google Scholar 

  32. Wang, T., Guo, B.: Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation. Numer. Numer. Meth. Part. Diff. Eq. 27, 1340–1363 (2011)

    Article  MathSciNet  Google Scholar 

  33. Sun, Z.: Numerical Methods for Partial Differential Equations[M], 2nd edn. Science Press, Beijing (2012). In Chinese)

    Google Scholar 

  34. Liao, F., Zhang, L., Wang, T.: Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. Numer. Algor. 85, 133–1363 (2020)

    Article  Google Scholar 

  35. Zhou, Y., Zhang, C., Brugnano, L.: Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations. Numer. Algor. 84, 633–649 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable comments and suggestions, which have helped to improve the paper. We are also very grateful to Editor in Chief Claude Brezinski for his kind help.

Funding

This work is partly supported by the National Natural Science Foundation of China (Nos. 11861047, 11871393), Natural Science Foundation of Jiangxi province (No. 20202BABL201005), and a key project of the International Science and Technology Cooperation Program of Shaanxi Research and Development Plan (Grant no. 2019KWZ-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingwen Deng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Wu, Q. The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations. Numer Algor 88, 1875–1914 (2021). https://doi.org/10.1007/s11075-021-01099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01099-5

Keywords

Navigation