Skip to main content
Log in

Blossoming and Hermite-Padé approximation for hypergeometric series

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Based on the blossoming theory, in this work we develop a new method for deriving Hermite-Padé approximants of certain hypergeometric series. Its general principle consists in building identities generalising the Hermite identity for exponentials, and in then applying their blossomed versions to appropriate tuples to simultaneously produce explicit expressions of the approximants and explicit integral representations of the corresponding remainders. For binomial series we use classical blossoms while for q-hypergeometric series we have to use q-blossoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait-Haddou, R.: q-Blossoming and Hermite-Padé approximants to the q-exponential function. Numer. Algo. 76, 53–66 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ait-Haddou, R., Goldman, R.: Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials. App. Math Comp. 266, 267–276 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ait-Haddou, R., Mazure, M.-L.: The fundamental blossoming inequality in Chebyshev Spaces I: applications to schur functions. Found. Comp. Math. 18, 135–158 (2018)

    Article  MathSciNet  Google Scholar 

  4. Baker, A.: Rational approximations to \(\sqrt [3]{2}\) and other algebraic numbers. Quart. J. Math. 15, 375–383 (1964)

    Article  Google Scholar 

  5. Baker, G.A.: Essentials of Padé Approximants. Academic Press, New York (1975)

    MATH  Google Scholar 

  6. Borwein, P.B.: Padé approximants for the q-elementary functions. Constr. Approx. 4, 391–402 (1988)

    Article  MathSciNet  Google Scholar 

  7. Brezinski, C., Padé, H.: Oeuvres. Albert Blanchard, Paris (1984)

    MATH  Google Scholar 

  8. de Bruin, M.G.: Some convergence results in simultaneous rational approximation to the set of hypergeometric functions \(\{{~}_{1}\!F_{1}(1; C_{i}; Z)\}_{i=1}^{n}\). In: Padé Approximation and Its Applications, Lecture Notes in Mathematics, vol. 1071, pp 12–33. Springer, Berlin (1984)

  9. de Bruin, M. G.: Simultaneous rational approximation to some q-hypergeometric functions. In: Nonlinear Numerical Methods and Rational Approximation, Math. Appl., vol. 43, pp 135–142. Reidel, Dordrecht (1988)

  10. Chudnovsky, G.V.: Padé approximations to the generalized hypergeometric functions. J. Math. Pures Appl. 58, 445–476 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Chudnovsky, D.V., Chudnovsky, G.V.: Padé and rational approximations to systems of functions and their arithmetic applications. In: Lecture Notes in Mathematics, vol. 1052. Springer, Berlin (1984)

  12. Erdélyi, A., et al.: Higher Transcendental Function, vol. 1. McGraw Hill Book Co., Inc., New York (1953)

    Google Scholar 

  13. Exton, M.: q-Hypergeometric Functions and Applications. Ellis Horwood series in mathematics and its applications, Chichester (1983)

    MATH  Google Scholar 

  14. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: a Practical Guide. Ac Press (1993)

  15. Gasper, G., Rahman, M.: Basic Hypergeometric Series. In: Encyclopedia Mathematics and its Applications, vol. 96. Cambridge University Press (2004)

  16. Hata, M., Huttner, M.: Padé approximation to the logarithmic derivative of the Gauss hypergeometric function, Analytic number theory, pp 157–172. Springer, Boston (2002)

    MATH  Google Scholar 

  17. Hermite, C.: Sur la généralisation des fractions continues algébriques. Annali Math. Pura Appl. 21, 289–308 (1893)

    Article  Google Scholar 

  18. Hurwitz, A.: Uber arithmetische Eigenschaften gewisser transcendenter Funktionen. Math. Ann. 22, 211–229 (1883)

    Article  MathSciNet  Google Scholar 

  19. Kac, V., Cheung, P.: Quantum calculus, Universitext series, IX. Springer, Berlin (2002)

    Book  Google Scholar 

  20. Matala-aho, T.: Type II Hermite-Padé approximations of generalized hypergeometric series. Constr. Approx. 33, 289–312 (2011)

    Article  MathSciNet  Google Scholar 

  21. Mazure, M.-L., Laurent, P.-J.: Affine and non-affine blossoms. In: Conte, R., Demichelis, V., Fontanelle, F., Galligani, I. (eds.) Torino Workshop on Computational Geometry, pp 201–230. World Scientific Pub., Singapore (1993)

  22. Mazure, M.-L.: Blossoming and CAGD algorithms. In: Shape Preserving Representations for Computer-Aided Design, pp 99–117. Nova Science Pub. (1999)

  23. Mazure, M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MathSciNet  Google Scholar 

  24. Mazure, M.-L.: Extended Chebyshev spaces in rationality. BIT Num. Math. 53, 1013–1045 (2013)

    Article  MathSciNet  Google Scholar 

  25. Merilä, V.: A nonvanishing lemma for certain Padé approximations of the second kind. Intern. J. Number Theory 7, 1977–1997 (2011)

    Article  MathSciNet  Google Scholar 

  26. Nesterenko, Y.V.: Hermite-Padé approximants of generalized hypergeometric functions. Russ. Acad. Sci. Sb. Math. 83(1995), 189–219 (1994)

    MATH  Google Scholar 

  27. Oruç, H., Phillips, G.M.: q-Bernstein polynomials and Bézier curves. J. Comp. Appl. Math. 151, 1–12 (2003)

    Article  Google Scholar 

  28. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Design 10, 181–210 (1993)

    Article  MathSciNet  Google Scholar 

  29. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Design 6, 323–358 (1989)

    Article  MathSciNet  Google Scholar 

  30. Seigel, C.L.: Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss., KL, 1 (1929)

  31. Simeonov, P., Zafiris, V., Goldman, R.: q-Blossoming: a new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves. J. Approx. Theory 164, 77–104 (2012)

    Article  MathSciNet  Google Scholar 

  32. Stihl, T.: Arithmetische Eigenschaften spezieller Heinescher Reihen. Math. Ann. 268, 21–41 (1984)

    Article  MathSciNet  Google Scholar 

  33. Thue, A.: Bemerkungen über gewisse näherungsbrüche algebraischer Zahlen. Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. K. 3 (1908)

  34. Thue, A.: Über rationale annäherungswerte der reellen würzel der ganzen Funktion dritten Grades x3axb. Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. M. 6 (1908)

  35. Van Assche, W.: Padé and Hermite-Padé approximation and orthogonality. Surv. Approxim. Theory 2, 61–91 (2006)

    MATH  Google Scholar 

  36. Waldschmidt, M.: Introduction to Diophantine methods: irrationality and transcendence, https://webusers.imj-prg.fr/michel.waldschmidt/coursHCMUNS2007.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-Haddou, R., Mazure, ML. Blossoming and Hermite-Padé approximation for hypergeometric series. Numer Algor 88, 1183–1214 (2021). https://doi.org/10.1007/s11075-021-01071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01071-3

Keywords

Mathematics subject classification (2010)

Navigation