Skip to main content
Log in

Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, a time two-mesh (TT-M) algorithm combined with the H1-Galerkin mixed finite element (FE) method is introduced to numerically solve the nonlinear distributed-order sub-diffusion model, which is faster than the H1-Galerkin mixed FE method. The Crank-Nicolson scheme with TT-M algorithm is used to discretize the temporal direction at time \(t_{n+\frac {1}{2}}\), the FBN-𝜃 formula is developed to approximate the distributed-order derivative, and the H1-Galerkin mixed FE method is used to approximate the spatial direction. TT-M mixed element algorithm mainly covers three steps: first, the mixed finite element solution of the nonlinear coupled system on the time coarse mesh ΔtC is calculated; next, based on the numerical solution obtained in the first step, the numerical solution of the nonlinear coupled system on time fine mesh ΔtF is obtained by using Lagrange’s interpolation formula; finally, the numerical solution of the linearized system on time fine mesh ΔtF is solved by using the results in the second step. The existence and uniqueness of the solution for our numerical scheme are shown. Moreover, the stability and a priori error estimate are analyzed in detail. Furthermore, numerical examples with smooth and nonsmooth solutions are given to validate our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61(1), 132 (2000)

    Article  MathSciNet  Google Scholar 

  2. Yuste, S., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction-subdiffusion process. Phys. Rev. E 69(3), 036126 (2004)

    Article  Google Scholar 

  3. Le Vot, F., Abad, E., Yuste, S.B.: Continuous-time random-walk model for anomalous diffusion in expanding media. Phys. Rev. E 96(3), 032117 (2017)

    Article  Google Scholar 

  4. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A: Stat. Mech. Appl. 314(1), 749–755 (2002)

    Article  MATH  Google Scholar 

  5. Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atangana, A.: On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. 293, 104–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daftardar-Gejji, V., Bhalekar, S.: Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 345(2), 754–765 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, J., Xu, D., Chen, H.B.: A weak Galerkin finite element method for multi-term time-fractional diffusion equations. East Asian J. Appl. Math. 8, 181–193 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yépez-Martínez, H., Gómez-Aguilar, J. F., Sosa, I.O., Reyes, J.M., Torres-Jiménez, J: The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Rev. Mex. Fis. 62(4), 310–316 (2016)

    MathSciNet  Google Scholar 

  10. Jin, B., Lazarov, R., Liu, Y.K., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, W., Jiang, X., Liu, F., Anh, V.: The unstructured mesh finite element method for the two-dimensional multi-term time-space fractional diffusion-wave equation on an irregular convex domain. J. Sci. Comput. 77, 27–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, L., Liu, F., Turner, I.: Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. Commun. Nonlinear Sci. Numer. Simul. 70, 354–371 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions. Comput. Meth. Appl. Mech. Eng. 327, 478–502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shi, Z.G., Zhao, Y.M., Liu, F., Tang, Y.F., Wang, F.L., Shi, Y.H.: High accuracy analysis of an H1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations. Comput. Math. Appl. 74(8), 1903–1914 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zheng, M., Liu, F., Anh, V., Turner, I.: A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40(7-8), 4970–4985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y., Du, Y.W., Li, H., Liu, F.W., Wang, Y.J.: Some second-order 𝜃 schemes combined with finite element method for nonlinear fractional Cable equation. Numer. Algor. 80, 533–555 (2019). https://doi.org/10.1007/s11075-018-0496-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187(1), 295–305 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1), 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80(3), 825–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation foe solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73 (1), 93–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46, 536–553 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bu, W.P., Xiao, A.G., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72(1), 422–441 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, H., Liu, F., Jiang, X., Zeng, F., Turner, I.: A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput. Math. Appl. 76(10), 2460–2476 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Abbaszadeh, M., Dehghan, M.: Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection-diffusion equation. Eng. Comput., 1–17 (2019)

  26. Karamali, G., Dehghan, M., Abbaszadeh, M.: Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method. Eng. Comput. 35(1), 87–100 (2019)

    Article  Google Scholar 

  27. Guo, S., Mei, L., Zhang, Z., Jiang, Y.: Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation. Appl. Math. Lett. 85, 157–163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, L., Ren, J.C.: High spatial accuracy analysis of linear triangular finite element for distributed order diffusion equations. Taiwan. J. Math. https://doi.org/10.11650/tjm/190803 (2019)

  29. Li, X.L., Rui, H.X., Liu, Z.G.: Two alternating direction implicit spectral methods for two-dimensional distributed-order differential equation. Numer. Algor. 82(1), 321–347 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Aboelenen, T.: Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger-type equations. Nonlinear Dyn. 92(2), 395–413 (2018)

    Article  MATH  Google Scholar 

  31. Shi, Y.H., Liu, F., Zhao, Y.M., Wang, F.L., Turner, I.: An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. Appl. Math. Model. 73, 615–636 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fei, M.F., Huang, C.M.: Galerkin-Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation. Int. J. Comput Math. 97(6), 1183–1196 (2020)

    Article  MathSciNet  Google Scholar 

  33. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  34. Hou, Y., Wen, C., Li, H., Liu, Y., Fang, Z.C., Yang, Y.N.: Some second-order σ schemes combined with an H1-Galerkin MFE method for a nonlinear distributed-order sub-diffusion equation. Mathematics 8, 187 (2020)

    Article  Google Scholar 

  35. Pani, A.K.: An H1-Galerkin mixed finite element methods for parabolic partial differential equations. SIAM J. Numer. Anal. 35(2), 712–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shi, D.Y., Wang, J.J.: Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations. Comput. Math. Appl. 72(6), 1590–1602 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Guo, L, Chen, H.Z.: H1-Galerkin mixed finite element method for the regularized long wave equation. Computing 77(2), 205–221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J.F., Liu, T.Q., Li, H., Liu, Y., He, S.: Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation. Comput. Math. Appl. 73, 1182–1196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yin, B.L., Liu, Y., Li, H., Zhang, Z.M.: Finite element methods based on two families of second-order numerical formulas for the fractional Cable model with smooth solutions. J. Sci. Comput. 84(1), 2 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yin, B.L., Liu, Y., Li, H., Zhang, Z.M.: Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations. arXiv:1906.01242v2 (2019)

  41. Li, C., Ding, H.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38(15-16), 3802–3821 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, Y., Yu, Z.D., Li, H., Liu, F.W., Wang, J.F.: Time two-mesh algorithm combined with finite element method for time fractional water wave model. Int. J. Heat Mass Transfer. 120, 1132–1145 (2018)

    Article  Google Scholar 

  43. Yin, B.L., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)

    Article  MathSciNet  Google Scholar 

  44. Zhao, M., He, S., Wang, H., Qin, G.: An integrated fractional partial differential equation and molecular dynamics model of anomalously diffusive transport in heterogeneous nano-pore structures. J. Comput. Phys. 373, 1000–1012 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Springer Science and Business Media (2010)

  46. Liu, Y., Yin, B.L., Li, H., Zhang, Z.M.: The unified theory of shifted convolution quadrature for fractional calculus. arXiv:1908.01136(2019)

  47. Yin, B.L., Liu, Y., Li, H.: A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Appl. Math. Comput. 368, 124799 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees and editor for their valuable comments and good suggestions which greatly improved the presentation of the paper.

Funding

This work is supported by the National Natural Science Foundation of China (12061053, 11661058, 11761053), Natural Science Foundation of Inner Mongolia (2020MS01003), and program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-17-A07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, C., Liu, Y., Yin, B. et al. Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model. Numer Algor 88, 523–553 (2021). https://doi.org/10.1007/s11075-020-01048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01048-8

Keywords

Navigation