Skip to main content
Log in

An algorithm for best rational approximation based on barycentric rational interpolation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present a novel algorithm for computing best uniform rational approximations to real scalar functions in the setting of zero defect. The method, dubbed BRASIL (best rational approximation by successive interval length adjustment), is based on the observation that the best rational approximation r to a function f must interpolate f at a certain number of interpolation nodes (xj). Furthermore, the sequence of local maximum errors per interval (xj− 1,xj) must equioscillate. The proposed algorithm iteratively rescales the lengths of the intervals with the goal of equilibrating the local errors. The required rational interpolants are computed in a stable way using the barycentric rational formula. The BRASIL algorithm may be viewed as a fixed-point iteration for the interpolation nodes and converges linearly. We demonstrate that a suitably designed rescaled and restarted Anderson acceleration (RAA) method significantly improves its convergence rate. The new algorithm exhibits excellent numerical stability and computes best rational approximations of high degree to many functions in a few seconds, using only standard IEEE double-precision arithmetic. A free and open-source implementation in Python is provided. We validate the algorithm by comparing to results from the literature. We also demonstrate that it converges quickly in some situations where the current state-of-the-art method, the minimax function from the Chebfun package which implements a barycentric variant of the Remez algorithm, fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. https://github.com/c-f-h/baryrat

  2. https://people.ricam.oeaw.ac.at/c.hofreither/software/—see https://orcid.org/0000-0002-6616-5081if link is out of date.

  3. https://baryrat.readthedocs.io/en/latest/

References

  1. Achieser, N.I.: Theory of Approximation. Dover books on advanced mathematics. Dover Publications, ISBN 9780486671291 (1992)

  2. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM (JACM) 12(4), 547–560 (1965). https://doi.org/10.1145/321296.321305

    Article  MathSciNet  MATH  Google Scholar 

  3. Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46 (3), 501–517 (2004). https://doi.org/10.1137/s0036144502417715

    Article  MathSciNet  MATH  Google Scholar 

  4. Berrut, J.-P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational interpolation. In: Trends and Applications in Constructive Approximation. https://doi.org/10.1007/3-7643-7356-3_3, pp 27–51. Birkhäuser, Basel (2005)

  5. Braess, D.: Nonlinear Approximation Theory. Springer, Berlin (1986). ISBN 978-3-642-64883-0. https://doi.org/10.1007/978-3-642-61609-9

    Book  Google Scholar 

  6. Brezinski, C., Redivo-Zaglia, M.: Padé-type rational and barycentric interpolation. Numer. Math. 125(1), 89–113 (2013). https://doi.org/10.1007/s00211-013-0535-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezinski, C., Redivo-Zaglia, M.: New representations of padé padé-type, and partial padé approximants. J. Comput. Appl. Math. 284, 69–77 (2015). https://doi.org/10.1016/j.cam.2014.07.007

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezinski, C., Redivo-Zaglia, M., Saad, Y.: Shanks sequence transformations and Anderson acceleration. SIAM Rev. 60 (3), 646–669 (2018). https://doi.org/10.1137/17m1120725

    Article  MathSciNet  MATH  Google Scholar 

  9. Carpenter, A.J., Ruttan, A., Varga, R.S.: Extended numerical computations on the 1/9 conjecture in rational approximation theory. In: Rational Approximation and Interpolation. https://doi.org/10.1007/bfb0072427, pp 383–411. Springer, Berlin (1984)

  10. Cheney, E.W., Loeb, H.L.: Two new algorithms for rational approximation. Numer. Math. 3(1), 72–75 (1961). https://doi.org/10.1007/bf01386002

    Article  MathSciNet  MATH  Google Scholar 

  11. Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselič, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299(1-3), 21–80 (1999). https://doi.org/10.1016/s0024-3795(99)00134-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications. http://www.chebfun.org/docs/guide/ (2014)

  13. Fang, H., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra Appl. 16(3), 197–221 (2009). https://doi.org/10.1002/nla.617

    Article  MathSciNet  MATH  Google Scholar 

  14. Filip, S.-I., Nakatsukasa, Y., Trefethen, L.N., Beckermann, B.: Rational minimax approximation via adaptive barycentric representations. SIAM J. Sci. Comput. 40(4), A2427–A2455 (2018). https://doi.org/10.1137/17m1132409

    Article  MathSciNet  MATH  Google Scholar 

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, 4th edn. ISBN 9781421408590 (2012)

  16. Harizanov, S., Lazarov, R., Margenov, S., Marinov, P.: The best uniform rational approximation: Applications to solving equations involving fractional powers of elliptic operators. arXiv:1910.13865 (2019)

  17. Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., Pasciak, J.: Analysis of numerical methods for spectral fractional elliptic equations based on the best uniform rational approximation. J. Comput. Phys. https://doi.org/10.1016/j.jcp.2020.109285. Available online (2020)

  18. Higham, N.J.: QR Factorization with complete pivoting and accurate computation of the SVD. Linear Algebra Appl. 309(1-3), 153–174 (2000). https://doi.org/10.1016/s0024-3795(99)00230-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002). ISBN 0-89871-521-0

    Book  Google Scholar 

  20. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4), 547–556 (2004). https://doi.org/10.1093/imanum/24.4.547

    Article  MathSciNet  MATH  Google Scholar 

  21. Higham, N.J., Strabic̀, N.: Anderson acceleration of the alternating projections method for computing the nearest correlation matrix. Numer. Algorithms 72(4), 1021–1042 (2015). https://doi.org/10.1007/s11075-015-0078-3

    Article  MathSciNet  Google Scholar 

  22. Hofreither, C.: A unified view of some numerical methods for fractional diffusion. Comput Math Appl 80(2), 332–350 (2020). https://doi.org/10.1016/j.camwa.2019.07.025

    Article  MathSciNet  MATH  Google Scholar 

  23. Ionięă, A.C.: Lagrange rational interpolation and its applications to approximation of large-scale dynamical systems. PhD thesis, Rice University, Houston, TY (2013)

  24. Knockaert, L.: A simple and accurate algorithm for barycentric rational interpolation. IEEE Signal Process. Lett. 15, 154–157 (2008). https://doi.org/10.1109/lsp.2007.913583

    Article  Google Scholar 

  25. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  26. Schneider, C., Werner, W.: Some new aspects of rational interpolation. Math. Comput. 47(175), 285–285 (1986). https://doi.org/10.1090/s0025-5718-1986-0842136-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Stahl, H.R.: Best uniform rational approximation of xα on [0, 1]. Acta Mathematica 190(2), 241–306 (2003). https://doi.org/10.1007/bf02392691

    Article  MathSciNet  Google Scholar 

  28. Toth, A., Kelley, C.T.: Convergence analysis for Anderson acceleration. SIAM J. Numer. Anal. 53(2), 805–819 (2015). https://doi.org/10.1137/130919398

    Article  MathSciNet  MATH  Google Scholar 

  29. Trefethen, L.N.: Approximation Theory and Approximation Practice. Other Titles in Applied Mathematics. SIAM, 2013. ISBN 9781611972405

  30. Varga, R.S., Carpenter, A.J.: Some numerical results on best uniform rational approximation of xα on [0, 1]. Numer. Algorithms 2(2), 171–185 (1992). https://doi.org/10.1007/bf02145384

    Article  MathSciNet  MATH  Google Scholar 

  31. Varga, R.S., Ruttan, A., Carpenter, A.D.: Numerical results on best uniform rational approximation of |x| on [− 1, 1]. Mathematics of the USSR-Sbornik 74 (2), 271–290 (1993). https://doi.org/10.1070/sm1993v074n02abeh003347

    Article  MathSciNet  Google Scholar 

  32. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011). https://doi.org/10.1137/10078356x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Hofreither.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofreither, C. An algorithm for best rational approximation based on barycentric rational interpolation. Numer Algor 88, 365–388 (2021). https://doi.org/10.1007/s11075-020-01042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01042-0

Keywords

Navigation