Skip to main content
Log in

Spectral collocation method for Caputo fractional terminal value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Spectral collocation method is proposed to solve Caputo fractional terminal value problem. The main idea of the proposed method is to solve the corresponding nonlinear weakly singular Volterra-Fredholm integral equation. The key step in presented method is to transform the nonlinear integral kernels to linear integral kernels by a functional transformation. Then, the integral terms can be calculated exactly by Gauss quadrature formula. The provided convergence analysis shows that the presented method has spectral convergency. Theoretical results are confirmed by numerical experiments. The presented method makes some improvements to the existed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, W.M., El-Khazali, R.: Fractional-order dynamical models of love. Chaos Solitons Fract. 33(4), 1367–1375 (2007)

    Article  MathSciNet  Google Scholar 

  2. Atabakzadeh, M., Akrami, M., Erjaee, G.: Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl. Math. Model. 37(20-21), 8903–8911 (2013)

    Article  MathSciNet  Google Scholar 

  3. Atangana, A., Owolabi, K. M., Atangana, A., Mophou, G., Hristov, J., Hammouch, Z.: New numerical approach for fractional differential equations. Math. Modell. Nat. Phenom. 13(1), 3 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bai, J., Feng, X.C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007)

    Article  MathSciNet  Google Scholar 

  5. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations, vol. 15. Cambridge University Press (2004)

  6. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)

    Article  Google Scholar 

  7. Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85, 603–1638 (2016)

    MathSciNet  Google Scholar 

  8. Cokun, Y., Arslan, M.: Terminal value problem for causal differential equations with a C aputo fractional derivative. Turk. J. Math. 41(4), 1042–1052 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Dabiri, A., Butcher, E.A.: Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. Appl. Math. Model. 56(APR.), 424–448 (2018)

    Article  MathSciNet  Google Scholar 

  10. Diethelm, K.: The analysis of fractional differential equations. Springer. Berlin (2010)

  11. Drici, Z., Devi, J.V., Mcrae, F.: On the comparison principle and existence results for terminal value problems. Nonlinear Stud. 21(2), 269–282

  12. Faires, J.D., Burden, R.L.: Numerical methods. Brooks/Cole Pub Co. (1998)

  13. Ford, N.J., Morgado, M.L., Rebelo, M.: High order numerical methods for fractional terminal value problems. Comput. Methods Appl. Math. 14(1), 55–70 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ford, N.J., Morgado, M.L., Rebelo, M.: A nonpolynomial collocation method for fractional terminal value problems. J. Comput. Appl. Math. 275, 392–402 (2015)

    Article  MathSciNet  Google Scholar 

  15. Graef, J.R., Kong, L., Wang, M.: A C hebyshev spectral method for solving R iemann-L iouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Gu, Z.: Spectral collocation method for system of weakly singular V olterra integral equations. Adv. Comput. Math. 45, 2677–2699 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gu, Z., Chen, Y.: Chebyshev spectral-collocation method for a class of weakly singular V olterra integral equations with proportional delay. J. Numer. Math. 22(4), 311–342 (2014)

    Article  MathSciNet  Google Scholar 

  18. Huang, C., Zhang, Z., Song, Q.: Spectral methods for substantial fractional differential equations. J. Sci. Comput. 74(3), 1554–1574 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a R iemann-L iouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)

    Article  MathSciNet  Google Scholar 

  20. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kasmaei, H.D., Senol, M.: On the numerical solution of nonlinear fractional-integro differential equations. Trends Math. Sci. 3(5), 118–127 (2017)

    Article  Google Scholar 

  22. Kopteva, N., Stynes, M.: Analysis and numerical solution of a R iemann-L iouville fractional derivarive two-point boundary value problem 43, 77–99 (2017)

  23. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. Siam J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  Google Scholar 

  24. Liang, H., Stynes, M.: Collocation methods for general C aputo two-point boundary value problems. J. Sci. Comput. 76(1), 390–425 (2018)

    Article  MathSciNet  Google Scholar 

  25. Liang, H., Stynes, M.: Collocation methods for general R iemann-L iouville two-point boundary value problems. Adv. Comput. Math. 45(2), 897–928 (2019)

    Article  MathSciNet  Google Scholar 

  26. Marks, R., Hall, M.M.W.: Differintegral interpolation from a bandlimited signal’s samples. IEEE Trans. Acoust. Speech Signal Process. 29(4), 872–877 (1981)

    Article  Google Scholar 

  27. Meerschaert, M.M., Scheffler, H.-P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211(1), 249–261 (2006)

    Article  MathSciNet  Google Scholar 

  28. Morgado, M.L., Rebelo, M.: Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 20(5), 1239–1262 (2017)

    Article  MathSciNet  Google Scholar 

  29. Pedas, A., Tamme, E.: Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 236(2), 167–176 (2011)

    Article  MathSciNet  Google Scholar 

  30. Pedas, A., Tamme, E.: Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236(13), 3349–3359 (2012)

    Article  MathSciNet  Google Scholar 

  31. Sheng, C., Jie, S.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)

    Article  MathSciNet  Google Scholar 

  32. Song, L., Xu, S., Yang, J.: Dynamical models of happiness with fractional order. Commun. Nonlinear Sci. Numer. Simul. 15(3), 616–628 (2010)

    Article  MathSciNet  Google Scholar 

  33. Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a C aputo fractional derivative. Ima J. Numer. Anal. 35(2), 698–721 (2015)

    Article  MathSciNet  Google Scholar 

  34. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  35. Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with C aputo and R iemann-L iouville derivatives. Numer. Algorithm. 72(1), 195–210 (2016)

    Article  MathSciNet  Google Scholar 

  36. West, B.J.: Fractional calculus in bioengineering. J. Stat. Phys. 126(6), 1285–1286 (2007)

    Article  Google Scholar 

  37. Yin, X., Zhou, J., Bing, H.: Finite difference approximations for fractional advection-dispersion equations. J. Comput. Appl. Math. 172(1), 65–77 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Zaky, M.: Recovery of high order accuracy in J acobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J. Comput. Appl. Math. 357(1), 103–122 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Guangdong Province of China (2018A030313236) and the National Natural Science Foundation of China (11971123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Gu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Kong, Y. Spectral collocation method for Caputo fractional terminal value problems. Numer Algor 88, 93–111 (2021). https://doi.org/10.1007/s11075-020-01031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01031-3

Keywords

Mathematics Subject Classification (2010)

Navigation