Skip to main content
Log in

A fast solver of Legendre-Laguerre spectral element method for the Camassa-Holm equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

An efficient and accurate Legendre-Laguerre spectral element method for solving the Camassa-Holm equation on the half line is proposed. The spectral element method has the flexibility for arbitrary h and p adaptivity. Two kinds of Sobolev orthogonal basis functions corresponding to each subinterval are constructed, which reduces the non-zero entries of linear systems and computational cost. Numerical experiments illustrate the effectiveness and accuracy of the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ai, Q., Li, H.Y., Wang, Z.Q.: Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems. Appl. Numer. Math. 127, 196–210 (2018)

    Article  MathSciNet  Google Scholar 

  2. Artebrant, R., Schroll, H.: Numerical Simulation of Camassa-Holm Peakons by Adaptive Upwinding. Appl. Numer. Math. 56, 695–711 (2006)

    Article  MathSciNet  Google Scholar 

  3. Boyd, J. P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)

    MATH  Google Scholar 

  4. Cai, W., Sun, Y., Wang, Y.: Geometric numerical integration for peakon b-family equations. Commun. Comput. Phys. 19, 24–52 (2016)

    Article  MathSciNet  Google Scholar 

  5. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  Google Scholar 

  7. Coclite, G., Karlsen, K., Risebro, N.: A convergent finite difference scheme for the Camassa-Holm equation with general H1 initial data. SIAM J. Numer. Anal. 46, 1554–1579 (2008)

    Article  MathSciNet  Google Scholar 

  8. Coclite, G., Karlsen, K., Risebro, N.: An explicit finite difference scheme for the Camassa-Holm equation. Adv. Differ. Equ. 13, 681–732 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Cohen, D., Owren, B., Raynaud, X.: Multi-symplectic integration of the Camassa-Holm equation. J. Comput. Phys. 227, 5492–5512 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cohen, D., Raynaud, X.: Geometric finite difference schemes for the generalized hyperelastic-rod wave equation. J. Comput. Appl. Math. 235, 1925–1940 (2011)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Guo, B.Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  Google Scholar 

  13. Guo, B.Y., Zhang, X.Y.: Spectral method for differential equations of degenerate type by using generalized Laguerre functions. Appl. Numer. Math. 57, 455–471 (2007)

    Article  MathSciNet  Google Scholar 

  14. Himonas, A., Misiolek, G.: The Cauchy problem for an integrable shallow water equation. Differ. Integral Equ. 14, 821–831 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Holden, H., Raynaud, X.: Convergence of a finite difference scheme for the Camassa-Holm equation. SIAM J. Numer. Anal. 44, 1655–1680 (2006)

    Article  MathSciNet  Google Scholar 

  16. Hong, Q., Gong, Y., Lv, Z.: Linear and Hamiltonian-conserving Fourier pseudo-spectral schemes for the Camassa-Holm equation. Appl. Math. Comput. 346, 86–95 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Kalisch, H., Lenells, J.: Numerical study of traveling-wave solutions for the Camassa-Holm equation. Chaos Solitons Fractals 25, 287–298 (2005)

    Article  MathSciNet  Google Scholar 

  18. Kalisch, H., Raynaud, X.: Convergence of a spectral projection of the Camassa-Holm equation. Numer. Methods Partial Differ. Equ. 22, 1197–1215 (2006)

    Article  MathSciNet  Google Scholar 

  19. Li, A., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  Google Scholar 

  20. Li, H.Y., Zhang, Z.M.: Efficient spectral and spectral element methods for eigenvalue problems of Schrödinger equations with an inverse square potential. SIAM J. Sci. Comput. 39, A114–A140 (2017)

    Article  Google Scholar 

  21. Liu, F.J., Wang, Z.Q., Li, H.Y.: A fully diagonalized spectral method using generalized Laguerre functions on the half line. Adv. Comput. Math. 43, 1227–1259 (2017)

    Article  MathSciNet  Google Scholar 

  22. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)

    Book  Google Scholar 

  23. Shen, J., Wang, L. L., Li, H.Y.: A triangular spectral element method using fully tensorial rational basis functions. SIAM J. Numer. Anal. 47, 1619–1650 (2009)

    Article  MathSciNet  Google Scholar 

  24. Wang, Z.Q., Xiang, X.M.: Generalized Laguerre approximations and spectral method for the Camassa-Holm equation. IMA J. Numer. Anal. 35, 1456–1482 (2015)

    Article  MathSciNet  Google Scholar 

  25. Xu, Y., Shu, C.W.: A local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MathSciNet  Google Scholar 

  26. Yu, X.H., Guo, B.Y.: Spectral element method for mixed inhomogeneous boundary value problems of fourth order. J. Sci. Comput. 61, 673–701 (2014)

    Article  MathSciNet  Google Scholar 

  27. Zhu, H., Song, S., Tang, Y.: Multi-symplectic wavelet collocation method for the Schrödinger equation and the Camassa-Holm equation. Comput. Phys. Commun. 182, 616–627 (2011)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12071294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqing Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Ye, X. & Wang, Z. A fast solver of Legendre-Laguerre spectral element method for the Camassa-Holm equation. Numer Algor 88, 1–23 (2021). https://doi.org/10.1007/s11075-020-01028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01028-y

Keywords

Mathematics Subject Classification (2010)

Navigation