Skip to main content
Log in

Stability and convergence analysis of stabilized finite element method for the Kelvin-Voigt viscoelastic fluid flow model

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider the Galerkin finite element method (FEM) for the Kelvin-Voigt viscoelastic fluid flow model with the lowest equal-order pairs. In order to overcome the restriction of the so-called inf-sup conditions, a pressure projection method based on the differences of two local Gauss integrations is introduced. Under some suitable assumptions on the initial data and forcing function, we firstly present some stability and convergence results of numerical solutions in spatial discrete scheme. By constructing the dual linearized Kelvin-Voigt model, stability and optimal error estimates of numerical solutions in various norms are established. Secondly, a fully discrete stabilized FEM is introduced, the backward Euler scheme is adopted to treat the time derivative terms, the implicit scheme is used to deal with the linear terms and semi-implicit scheme is applied to treat the nonlinear term, unconditional stability and convergence results are also presented. Finally, some numerical examples are presented to verify the developed theoretical analysis and show the performances of the considered numerical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pani, A.K., Yuan, J.Y.: Semidiscrete finite element Galerkin approximations to the equations of motion arising in the oldroyd model. IMA J. Numer. Anal. 25, 750–782 (2005)

    Article  MathSciNet  Google Scholar 

  2. Pani, A.K., Yuan, J.Y., Damazio, P.: On a linearized backward Euler method for the equations of motion of oldroyd fluids of order one. SIAM J. Numer. Anal. 44, 804–825 (2006)

    Article  MathSciNet  Google Scholar 

  3. Zhang, T., Yuan, J.Y.: A stabilized characteristic finite element method for the viscoelastic oldroyd fluid motion problem. Int. J. Numer. Anal. Model. 12, 617–635 (2015)

    MathSciNet  Google Scholar 

  4. Pavlovskii, V.A.: To the question of theoretical description of weak aqueous polymer solutions. Soviet physics-Doklady 200, 809–812 (1971)

    Google Scholar 

  5. Oskolkov, A.P.: The uniqueness and global solvability of boundary-value problems for the equations of motion for aqueous solutions of polymers. Journal of Soviet Mathematics 8(4), 427–455 (1977)

    Article  Google Scholar 

  6. Cao, Y., Lunasin, E., Titi, E.S.: Global wellposedness of the three dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4, 823–848 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cotter, C.S., Smolarkiewicz, P.K., Szezyrba, I.N.: A viscoelastic model from brain injuries. Int. J. Numer. Methods Fluids 40, 303–311 (2002)

    Article  Google Scholar 

  8. Oskolkov, A.P.: On an estimate, uniform on the semiaxis t ≥ 0, for the rate of convergence of Galerkin approximations for the equations of motion of Kelvin-Voight fluids. Journal of Soviet Mathematics 62, 2802–2806 (1992)

    Article  MathSciNet  Google Scholar 

  9. Pani, A.K., Pany, A.K., Damazio, P., Yuan, J.Y.: A modified nonlinear spectral Galerkin method for the equations of motion arising in the Kelvin-Voigt fluids. Appl. Anal. 93, 1587–1610 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bajpai, S., Nataraj, N., Pani, A.K.: On fully discrete finite element schemes for equations of motion of Kelvin-Voigt fluids. Int. J. Numer. Anal. Model. 10, 481–507 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Pany, A.K.: Fully discrete second-order backward difference method for Kelvin-Voigt fluid flow model. Numerical Algorithms 78, 1061–1086 (2018)

    Article  MathSciNet  Google Scholar 

  12. Pany, A.K., Paikray, A.K., Padhy, S., Pani, A.K.: Backward Euler schemes for the Kelvin-Voigt viscoelastic fluid flow model. Int. J. Numer. Anal. Model. 14, 126–151 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Bajpai, S., Nataraj, N.: On a two-grid finite element scheme combined with Crank-Nicolson method for the equations of motion arising in the Kelvin-Voigt model. Computer & Mathematics with Applications 68, 2277–2291 (2014)

    Article  MathSciNet  Google Scholar 

  14. Bajpai, S., Nataraj, N., Pani, A.K.: On a two-grid finite element scheme for the equations of motion arising in Kelvin-Voigt model. Adv. Comput. Math. 40, 1043–1071 (2014)

    Article  MathSciNet  Google Scholar 

  15. Giraut, V., Raviart, P.: Finite element approximation of the Navier-Stokes equations. Springer, Berlin (1979)

    Book  Google Scholar 

  16. Temam, R.: Navier-Stokes equations, theory and numerical analysis. North-Holland Pub. Co, Amsterdam (1984)

    MATH  Google Scholar 

  17. Bochev, P., Dohrmann, C., Gunzburger, M.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44, 82–101 (2006)

    Article  MathSciNet  Google Scholar 

  18. Dohrmann, C., Bochev, P.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46, 183–201 (2004)

    Article  MathSciNet  Google Scholar 

  19. He, Y.N., Lin, Y.P., Sun, W.W.: Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems-B 6, 41–68 (2006)

    Article  MathSciNet  Google Scholar 

  20. Li, J., He, Y.N., Chen, Z.X.: A new stabilized finite element method for the transient Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 22–35 (2007)

    Article  MathSciNet  Google Scholar 

  21. Huang, P.Z., Feng, X.L., Liu, D.M.: A stabilized finite element method for the time-dependent Stokes equations based on Crank-Nicolson scheme. Appl. Math. Model. 37, 1910–1919 (2013)

    Article  MathSciNet  Google Scholar 

  22. Bajpai, S., Nataraj, N., Pani, A.K., Damazio, P., Yuan, J.Y.: Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow. Numerical Methods for Partial Differential Equations 29, 857–883 (2013)

    Article  MathSciNet  Google Scholar 

  23. Pany, A.K., Bajpai, S., Pani, A.K.: Optimal error estimates for semidiscrete Galerkin approximations to equations of motion described by Kelvin-Voigt viscoelastic fluid flow model. J. Comput. Appl. Math. 302, 234–257 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ciarlet, P.: The Finite Element Method for Elliptic Problems. SIAM Publications, North-Holland, Amsterdam (2002)

    Book  Google Scholar 

  25. Feng, X.L., He, Y.N., Huang, P.Z.: A stabilized implicit fractional-step method for the time-dependent Navier-Stokes equations using equal-order pairs. J. Math. Anal. Appl. 392, 209–224 (2012)

    Article  MathSciNet  Google Scholar 

  26. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  27. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier-Stokes problem. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MathSciNet  Google Scholar 

  28. He, Y.N.: A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem. IMA J. Numer. Anal. 23, 665–691 (2003)

    Article  MathSciNet  Google Scholar 

  29. Arnold, D.N., Brezzi, F., FortinLi, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  Google Scholar 

  30. Gerbeau, J.F., Bris, C., Lelievre, T.: Mathematical Method for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  31. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg, New York, Dordrecht, London (2010)

  32. Ghia, U., Ghia, K.N., Shin, C.T.: High-resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  Google Scholar 

Download references

Funding

This work was supported by NSF of China (No. 11971152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Duan, M. Stability and convergence analysis of stabilized finite element method for the Kelvin-Voigt viscoelastic fluid flow model. Numer Algor 87, 1201–1228 (2021). https://doi.org/10.1007/s11075-020-01005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01005-5

Keywords

Mathematics Subject Classification (2010)

Navigation