Skip to main content

Advertisement

Log in

Novel energy stable schemes for Swift-Hohenberg model with quadratic-cubic nonlinearity based on the H−1-gradient flow approach

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Swift-Hohenberg model is a very important phase field crystal model which can be described many crystal phenomena. This model with quadratic-cubic nonlinearity based on the H− 1-gradient flow approach is a sixth-order system which satisfies mass conservation and energy dissipation law. The negative energy of this model will bring huge difficulties to energy stability for many existing approaches. In this paper, we consider two linear, second-order and unconditionally energy stable schemes by linear invariant energy quadratization (LIEQ) and modified scalar auxiliary variable (MSAV) approaches. These two schemes will be effective for all negative E1. Furthermore, we proved that all the semi-discrete schemes are unconditionally energy stable with respect to a modified energy. Finally, we present various 2D numerical simulations to demonstrate the stability and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bates, P.W., Brown, S., Han, J.: Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model 6, 33–49 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Berry, J., Grant, M., Elder, K.R.: Diffusive atomistic dynamics of edge dislocations in two dimensions. Physical Review E Statistical Nonlinear & Soft Matter Physics 73, 031609 (2006)

    Article  Google Scholar 

  3. Chen, C., Yang, X.: Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J. Comput. Phys. 388, 41–62 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chen, C., Yang, X.: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn–Hilliard model. Comput. Methods Appl. Mech. Eng. 351, 35–59 (2019)

    Article  MathSciNet  Google Scholar 

  5. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation. J. Comput. Phys. 363, 39–54 (2018)

    Article  MathSciNet  Google Scholar 

  6. Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E. 70, 051605 (2004)

    Article  Google Scholar 

  7. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2004)

    Article  Google Scholar 

  8. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS Online Proceedings Library Archive, 529 (1998)

  9. Gomez, H., Nogueira, X.: An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Eng. 249, 52–61 (2012)

    Article  MathSciNet  Google Scholar 

  10. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MathSciNet  Google Scholar 

  11. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  Google Scholar 

  12. Lee, H.G.: A semi-analytical fourier spectral method for the Swift–Hohenberg equation. Comput. Math. Appl. 74, 1885–1896 (2017)

    Article  MathSciNet  Google Scholar 

  13. Lee, H.G.: An energy stable method for the Swift–Hohenberg equation with quadratic–cubic nonlinearity. Comput. Methods Appl. Mech. Eng. 343, 40–51 (2019)

    Article  MathSciNet  Google Scholar 

  14. Lee, H.G., Kim, J.: A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces. Comput. Methods Appl. Mech. Eng. 307, 32–43 (2016)

    Article  MathSciNet  Google Scholar 

  15. Li, Q., Mei, L., Yang, X., Li, Y.: Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 45(3), 1551–1580 (2019)

    Article  MathSciNet  Google Scholar 

  16. Li, Y., Kim, J.: An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation. Comput. Methods Appl. Mech. Eng. 319, 194–216 (2017)

    Article  MathSciNet  Google Scholar 

  17. Liu, H., Yin, P.: Unconditionally energy stable dg schemes for the Swift–Hohenberg equation. J. Sci. Comput. 81, 789–819 (2019)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z., Li, X.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numerical Algorithms, 1–26. https://doi.org/10.1007/s11075-019-00804-9 (2019)

  19. Liu, Z., Li, X.: Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl. Math. Lett. 98, 206–214 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liu, Z., Li, X.: The exponential scalar auxiliary variable (e-sav) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42, B630–B655 (2020)

    Article  MathSciNet  Google Scholar 

  21. Liu, Z., Li, X.: Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Appl. Numer. Math. 150, 491–506 (2020)

    Article  MathSciNet  Google Scholar 

  22. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  24. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst 28, 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  25. Shin, J., Lee, H.G., Lee, J.-Y.: First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 327, 519–542 (2016)

    Article  MathSciNet  Google Scholar 

  26. Stefanovic, P.N.P.: Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E. 80, 046107 (2009)

    Article  Google Scholar 

  27. Weng, Z., Zhai, S., Feng, X.: A Fourier spectral method for fractional-in-space Cahn–Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wu, K-A, Adland, A., Karma, A.: Phase-field-crystal model for fcc ordering. Physical Review E Statistical Nonlinear & Soft Matter Physics 81, 061601 (2010)

    Article  Google Scholar 

  29. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  30. Yang, X., Han, D.: Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)

    Article  MathSciNet  Google Scholar 

  31. Yang, X., Zhang, G.: Numerical approximations of the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential using the invariant energy quadratization approach. arXiv:1712.02760 (2017)

  32. Zhang, J., Yang, X.: Numerical approximations for a new l2-gradient flow based phase field crystal model with precise nonlocal mass conservation. Comput. Phys. Commun. 243, 51–67 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement. This work is supported by China Postdoctoral Science Foundation under grant number 2020M672111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z. Novel energy stable schemes for Swift-Hohenberg model with quadratic-cubic nonlinearity based on the H−1-gradient flow approach. Numer Algor 87, 633–650 (2021). https://doi.org/10.1007/s11075-020-00981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00981-y

Keywords

Mathematics Subject Classification (2010)

Navigation