Skip to main content
Log in

Extension of the LP-Newton method to conic programming problems via semi-infinite representation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The LP-Newton method solves linear programming (LP) problems by repeatedly projecting a current point onto a certain relevant polytope. In this paper, we extend the algorithmic framework of the LP-Newton method to conic programming (CP) problems via a linear semi-infinite programming (LSIP) reformulation. In this extension, we produce a sequence by projection onto polyhedral cones constructed from LP problems obtained by finitely relaxing the LSIP problem equivalent to the CP problem. We show global convergence of the proposed algorithm under mild assumptions. To investigate its efficiency, we apply our proposed algorithm and a primal-dual interior-point method to second-order cone programming problems and compare the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. SIAM (2001)

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

  3. Chen, X., Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity problems. Math. Program. 95, 431–474 (2003)

    Article  MathSciNet  Google Scholar 

  4. Faraut, J., Koranyi, A.: Analysis on Symmetric Cones. Oxford University Press, Oxford (1994)

  5. Fujishige, S., Hayashi, T., Yamashita, K., Zimmermann, U.: Zonotopes and the LP-Newton method. Optim. Eng. 10, 193–205 (2009)

    Article  MathSciNet  Google Scholar 

  6. Hayashi, S., Okuno, T., Ito, Y.: Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation. Optim. Methods Softw. 31, 1272–1297 (2016)

    Article  MathSciNet  Google Scholar 

  7. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  MathSciNet  Google Scholar 

  8. Hettich, R., Kortanek, K. O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MathSciNet  Google Scholar 

  9. Huang, Z.H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45, 557–579 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kitahara, T., Mizuno, S., Shi, J.: The LP-Newton method for standard form linear programming problems. Oper. Res. Lett. 41, 426–429 (2013)

    Article  MathSciNet  Google Scholar 

  11. Kitahara, T., Sukegawa, N.: A simple projection algorithm for linear programming problems. Algorithmica 81, 167–178 (2019)

    Article  MathSciNet  Google Scholar 

  12. Kitahara, T., Tsuchiya, T.: An extension of Chubanov’s polynomial-time linear programming algorithm to second-order cone programming. Optim. Methods Softw. 33, 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  13. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  Google Scholar 

  14. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MathSciNet  Google Scholar 

  15. Lourenço, B.F., Kitahara, T., Muramatsu, M., Tsuchiya, T.: An extension of Chubanov’s algorithm to symmetric cones. Math. Program. 173, 117–149 (2019)

    Article  MathSciNet  Google Scholar 

  16. Monteiro, R.D.C., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. Math. Programm. 88, 61–83 (2000)

    Article  MathSciNet  Google Scholar 

  17. Muramatsu, M.: A pivoting procedure for a class of second-order cone programming. Optim. Methods Softw. 21, 295–315 (2006)

    Article  MathSciNet  Google Scholar 

  18. Nesterov, Y., Nemirovski, A.: Interior-Point Polynomial Methods in Convex Programming. SIAM (1994)

  19. Silvestri, F., Reinelt, G.: The LP-Newton method and conic optimization. arXiv:1611.09260v2 (2017)

  20. Skajaa, A., Ye, Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic optimization. Math. Program. 150, 391–422 (2015)

    Article  MathSciNet  Google Scholar 

  21. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  Google Scholar 

  22. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  23. Wilhelmsen, D.R.: A nearest point algorithm for convex polyhedral cones and applications to positive linear approximation. Math. Comput. 30, 48–57 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)

    Article  MathSciNet  Google Scholar 

  25. Zhadan, V.: Two-phase simplex method for linear semidefinite optimization. Optim. Lett. 13, 1969–1984 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor Claude Brezinski, the anonymous reviewers, and Dr. Bruno Figueira Lourenço for useful comments.

Funding

This research is supported by JST CREST JPMJCR14D2 and JSPS Grants-in-Aid for Young Scientists 15K15943, 16K16357, and 19K15247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirai Tanaka.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M., Okuno, T. Extension of the LP-Newton method to conic programming problems via semi-infinite representation. Numer Algor 86, 1285–1302 (2021). https://doi.org/10.1007/s11075-020-00933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00933-6

Keywords

Navigation