Skip to main content
Log in

Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We offer the algorithm for choosing tension parameters of the generalized splines for convexity preserving interpolation. The resulting spline minimally differs from the classical cubic spline and coincides with it if sufficient convexity conditions are satisfied for the last one. We consider specific algorithms for different generalized cubic splines such as rational, exponential, variable power, hyperbolic splines, and splines with additional knots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akima, V.V.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17(4), 589–602 (1970). https://doi.org/10.1145/321607.321609

    Article  Google Scholar 

  2. Bogdanov, V.V.: Sufficient conditions for the comonotone interpolation of cubic C2-splines. Sib. Adv. Math. 22(3), 153–160 (2012). https://doi.org/10.3103/S1055134412030017

    Article  Google Scholar 

  3. Bogdanov, V.V.: Sufficient conditions for the nonnegativity of solutions to a system of equations with a nonstrictly Jacobian matrix. Sib. Math. J. 54(3), 425–430 (2013). https://doi.org/10.1134/S0037446613030063

    Article  MathSciNet  Google Scholar 

  4. Bogdanov, V.V., Volkov, Y.S.: Selection of parameters of generalized cubic splines with convexity preserving interpolation. Sib. Zh. Vychisl. Mat. 9(1), 5–22 (2006). [in Russian]

    MATH  Google Scholar 

  5. Bogdanov, V.V., Volkov, Y.S.: Shape-preservation conditions for cubic spline interpolation. Sib. Adv. Math. 29(4), 231–262 (2019). https://doi.org/10.3103/S1055134419040011

    Article  Google Scholar 

  6. Clements, J.C.: Convexity-preserving piecewise rational cubic interpolation. SIAM J. Numer. Anal. 27(4), 1016–1023 (1990). https://doi.org/10.1137/0727059

    Article  MathSciNet  Google Scholar 

  7. Costantini, P.: On monotone and convex spline interpolation. Math. Comput. 46(173), 203–214 (1986). https://doi.org/10.1090/S0025-5718-1986-0815841-7

    Article  MathSciNet  Google Scholar 

  8. Costantini, P., Goodman, T., Manni, C.: Constructing C3 shape preserving interpolating space curves. Adv. Comput. Math. 14(2), 103–127 (2001). https://doi.org/10.1023/A:1016664630563

    Article  MathSciNet  Google Scholar 

  9. Cravero, I., Manni, C.: Shape-preserving interpolants with high smoothness. J. Comput. Appl. Math. 157 (2), 383–405 (2003). https://doi.org/10.1016/S0377-0427(03)00418-7

    Article  MathSciNet  Google Scholar 

  10. Dauner, H., Reinsch, C.H.: An analysis of two algorithms for shape-preserving cubic spline interpolation. IMA J. Num. Anal. 9(3), 299–314 (1989). https://doi.org/10.1093/imanum/9.3.299

    Article  MathSciNet  Google Scholar 

  11. Delbourgo, R., Gregory, J.A.: Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput. 6(4), 967–976 (1985). https://doi.org/10.1137/0906065

    Article  MathSciNet  Google Scholar 

  12. Fritsch, F. N., Carlson, R. E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980). https://doi.org/10.1137/0717021

    Article  MathSciNet  Google Scholar 

  13. Goodman, T.: Shape preserving interpolation by curves. In: Levesley, J., Anderson, I.J., Mason, J.C. (eds.) Algorithms for Approximation IV: Proc., 2001, pp 24–35. University of Huddersfield, HuddersBeld (2002)

  14. Gregory, J.A.: Shape preserving rational spline interpolation. In: Graves-Morris, P.R., Saff, E.B., Varga, R.S. (eds.) Rational Approximation and Interpolation: Proc. UK-US Conf., Tampa, 1983, Lecture Notes in Mathematics, 1105, pp 431–441. Springer, Berlin (1984)

  15. Gregory, J.A.: Shape preserving spline interpolation. Comput.-Aided Des. 18(1), 53–57 (1986). https://doi.org/10.1016/S0010-4485(86)80012-4

    Article  Google Scholar 

  16. Hornung, U.: Monotone spline-interpolation. In: Collatz, L., Meinardus, G., Werner, H. (eds.) Numerische Methoden der Approximationstheorie, Band 4: Vortragsauszüge der Tagung über numerische Methoden der Approximationstheorie, Oberwolfach, 1977, ISNM International Series of Numerical Mathematics, 42, pp 172–191. Basel, Birkhäuser (1978). https://doi.org/10.1007/978-3-0348-6460-2_11

  17. Hornung, U.: Interpolation by smooth functions under restrictions on the derivatives. J. Approx. Theory 28(3), 227–237 (1980). https://doi.org/10.1016/0021-9045(80)90077-5

    Article  MathSciNet  Google Scholar 

  18. Kaklis, P.D., Pandelis, D.G.: Convexity-preserving polynomial splines of non-uniform degree. IMA J. Num. Anal. 10(2), 223–234 (1990). https://doi.org/10.1093/imanum/10.2.223

    Article  Google Scholar 

  19. Kvasov, B.I.: Methods of shape-preserving spline approximation. World Scientific, Singapore (2000)

    Book  Google Scholar 

  20. Lamberti, P., Manni, C.: Shape-preserving C2 functional interpolation via parametric cubics. Numer. Algorithms 28(1–4), 229–254 (2001). https://doi.org/10.1023/A:1014011303076

    Article  MathSciNet  Google Scholar 

  21. Lettieri, D., Manni, C., Pelosi, F., Speleers, H.: Shape preserving HC2 interpolatory subdivision. BIT 55(3), 751–779 (2015). https://doi.org/10.1007/s10543-014-0530-0

    Article  MathSciNet  Google Scholar 

  22. Lettieri, D., Manni, C., Speleers, H.: Piecewise rational quintic shape-preserving interpolation with high smoothness. Jaen J. Approx. 6(2), 233–260 (2014)

    MathSciNet  MATH  Google Scholar 

  23. McCartin, B.J.: Computation of exponential splines. SIAM J. Sci. Stat. Comput. 11(2), 242–262 (1990). https://doi.org/10.1137/0911015

    Article  MathSciNet  Google Scholar 

  24. Miroshnichenko, V.L.: Convex and monotone spline interpolation. In: Constructive theory of function ’84: Proc. Int. Conf., Varna/Bulg., pp. 610–620 (1984)

  25. Opfer, G., Oberle, H.J.: The derivation of cubic splines with obstacles by methods of optimization and optimal control. Numer. Math. 52(1), 17–31 (1988). https://doi.org/10.1007/BF01401020

    Article  MathSciNet  Google Scholar 

  26. Passow, E.: Piecewise monotone spline interpolation. J. Approx. Theory 12 (3), 240–241 (1974). https://doi.org/10.1016/0021-9045(74)90066-5

    Article  MathSciNet  Google Scholar 

  27. Pruess, S.: Properties of splines in tension. J. Approx. Theory 17(1), 86–96 (1976). https://doi.org/10.1016/0021-9045(76)90113-1

    Article  MathSciNet  Google Scholar 

  28. Pruess, S.: Alternatives to the exponential spline in tension. Math. Comput. 33(148), 1273–1281 (1979). https://doi.org/10.2307/2006461

    Article  MathSciNet  Google Scholar 

  29. Rentrop, P.: An algorithm for computation of the exponential spline. Numer. Math. 35(1), 81–93 (1980). https://doi.org/10.1007/BF01396372

    Article  MathSciNet  Google Scholar 

  30. Sapidis, N.S., Kaklis, P.D., Loukakis, T.A.: A method for computing the tension parameters in convexity-preserving spline-in-tension interpolation. Numer. Math. 54(2), 179–192 (1988). https://doi.org/10.1007/BF01396973

    Article  MathSciNet  Google Scholar 

  31. Schmidt, J.W., Heß, W.: Positivity of cubic polynomials on intervals and positive spline interpolation. BIT 28(2), 340–352 (1988). https://doi.org/10.1007/BF01934097

    Article  MathSciNet  Google Scholar 

  32. Schweikert, D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45(3), 312–317 (1966). https://doi.org/10.1002/sapm1966451312

    Article  MathSciNet  Google Scholar 

  33. Soanes, R.W.J.: VP-splines, an extension of twice differentiable interpolation. In: Proceedings of the 1976 army numerical analisys and computers conference, pp. 141–152 (1976)

  34. Späth, H.: Exponential spline interpolation. Computing 4(3), 225–233 (1969). https://doi.org/10.1007/BF02234771

    Article  MathSciNet  Google Scholar 

  35. Späth, H.: Rationale spline-interpolation. Angew. Inform. 13, 357–359 (1971)

    MATH  Google Scholar 

  36. Späth, H.: Spline-Algorithmen zur Konstruktion glatter Kurven und Flächen. R. Oldenbourg, München (1973)

    MATH  Google Scholar 

  37. Volkov, Y. S.: On a nonnegative solution of a system of equations with a symmetric circulant matrix. Math. Notes 70(2), 154–162 (2001). https://doi.org/10.1023/A:1010294422935

    Article  MathSciNet  Google Scholar 

  38. Volkov, Y.S.: A new method for constructing interpolation cubic splines. Dokl. Math. 65(1), 13–15 (2002)

    MATH  Google Scholar 

  39. Volkov, Y.S.: A new method for constructing interpolation cubic splines. Comput. Math. Math. Phys. 44(2), 215–224 (2004)

    MathSciNet  Google Scholar 

  40. Volkov, Y.S., Bogdanov, V.V., Miroshnichenko, V.L., Shevaldin, V.T.: Shape-preserving interpolation by cubic splines. Math. Notes 88(6), 798–805 (2010). https://doi.org/10.1134/S0001434610110209

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for their useful suggestions and comments that, with no doubt, have helped to improve the quality of this paper.

Funding

This work was financially supported by the program of fundamental scientific researches of the SB RAS (Project No. 0314-2019-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy S. Volkov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, V.V., Volkov, Y.S. Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines. Numer Algor 86, 833–861 (2021). https://doi.org/10.1007/s11075-020-00914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00914-9

Keywords

Mathematics subject classification (2010)

Navigation