Skip to main content
Log in

Distribution-dependent SDEs with Hölder continuous drift and α-stable noise

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, the existence and uniqueness of the distribution-dependent SDEs with the Hölder continuous drift driven by a α-stable process are investigated. Moreover, by using the Zvonkin-type transformation, the convergence rate of the Euler–Maruyama method and propagation of chaos is also obtained. The results cover the ones in the case of distribution-independent SDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Airachid, H., Bossy, M., Ricci, C., Szpruch, L.: New particle representations for ergodic McKean-Vlasov SDEs, arXiv:1901.05507

  2. Bao, J., Huang, X., Yuan, C.: Convergence rate of Euler–Maruyama scheme for SDEs with Hölder–dini continuous drifts. J. Theor. Probab. 32, 848–871 (2019)

    Article  Google Scholar 

  3. Bao, J., Huang, X.: Approximations of Mckean-Vlasov SDEs with Irregular Coefficients, arXiv:1905.08522

  4. Bauer, M., Meyer-Brandis, T., Proske, F.: Strong solutions of mean-field stochastic differential equations with irregular drift. Electron. J. Probab. 23(paper no. 132), 35 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Buckdahn, R., Li, J., Ma, J.: A mean-field stochastic control problem with partial observations. Ann. Appl. Probab. 27, 3201–3245 (2017)

    Article  MathSciNet  Google Scholar 

  6. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45, 824–878 (2017)

    Article  MathSciNet  Google Scholar 

  7. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications I, vol. 84 of Probability Theory and Stochastic Modelling, 1st ed. Springer International Publishing (2017)

  8. Chaudru de Raynal, P.-E.: Strong well-posedness of McKean-Vlasov stochastic differential equation with Hölder drift, arXiv:1512.08096

  9. Crisan, D., McMurray, E.: Smoothing properties of McKean-Vlasov SDEs. Probab. Theory Rel. Fields 171, 97–148 (2018)

    Article  MathSciNet  Google Scholar 

  10. dos Reis, G., Engelhardt, S., Smith, G.: Simulation of McKean-Vlasov SDEs with super linear growth, arXiv:1808.05530

  11. Eberle, A., Guillin, A., Zimmer, R.: Quantitative Harris–type theorems for diffusions and McKean-Vlasov processes. Trans. Amer. Math. Soc. 371, 7135–7173 (2019)

    Article  MathSciNet  Google Scholar 

  12. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Rel. Fields 162, 707–738 (2015)

    Article  MathSciNet  Google Scholar 

  13. Gyöngy, I., Rásonyi, M.: A note on Euler approximations for SDEs with hölder continuous diffusion coefficients. Stoch. Proc. Appl. 121, 2189–2200 (2011)

    Article  Google Scholar 

  14. Huang, X., Liao, Z.: The Euler-Maruyama method for S(F) DEs with hölder drift and α-stable noise. Stoch. Anal. Appl. 36, 28–39 (2018)

  15. Huang, X., Wang, F. -Y.: Distribution dependent SDEs with singular coefficients. Stoch. Proc. Appl. 129, 4747–4770 (2019)

  16. Huang, X.: Path-Distribution Dependent SDEs with Singular Coefficients, arXiv:1805.01682

  17. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes North-Holland Mathematical Library, vol. 24. North-Holland Publishing Co., Kodansha, Ltd., Amsterdam (1981)

    Google Scholar 

  18. Jin, P.: On weak solutions of SDEs with singular time-dependent drift and driven by stable processes, Stoch. Dyn. 18 (2018)

  19. Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. Birkhäus. Boston 70, 305–373 (2004)

    MATH  Google Scholar 

  20. Lenglart, E.: Relation de domination entre deux processus. Ann. l’Inst. Henri Poincaré. Sect. B. Calc. Probab. Stat. Nouvelle Sér. 2, 171–179 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Li, J., Min, H.: Weak solutions of mean-field stochastic differential equations and application to zero-sum stochastic differential games. SIAM J. Control Optim. 54, 1826–1858 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mikulevic̆ius, R., Xu, F. H.: On the rate of convergence of strong Euler approximation for SDEs driven by Lévy processes. Stochastics 90, 569–604 (2018)

    Article  MathSciNet  Google Scholar 

  23. McKean, Jr., H.P.: A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A. 56, 1907–1911 (1966)

    Article  MathSciNet  Google Scholar 

  24. Mehri, S., Stannat, W.: Weak solutions to Vlasov–McKean equations under Lyapunov–type conditions, arXiv:1901.07778

  25. Mishura, Y.S., Veretennikov, A.Y.: Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, arXiv:1603.02212

  26. Ngo, H. -L., Taguchi, D.: Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients. Math. Comput. 85, 1793–1819 (2016)

  27. Pamen, O. M., Taguchi, D.: Strong rate of convergence for the Euler-Maruyama approximation of SDEs with Hölder continuous drift coefficient. Stoch. Proc. Appl. 127, 2542–2559 (2017)

    Article  Google Scholar 

  28. Priola, E.: Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math. 49, 421–447 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Ren, P., Wang, F.-Y.: Bismut formula for Lions derivative of distribution dependent SDEs and applications. J. Differ. Equ. 267, 4745–4777 (2019)

    Article  MathSciNet  Google Scholar 

  30. Röckner, M., Zhang, X.: Well-posedness of distribution dependent SDEs with singular drifts, arXiv:1809.02216

  31. Skorohod, A. V.: Studies in the Theory of Random Processes. Izdat. Kiev. Univ., 1961, Kiev English transl.: Addison Wesley Publ. Co., Reading (1965)

    Google Scholar 

  32. Song, Y.: Gradient estimates and exponential ergodicity for mean-field SDEs with jumps, to appear in J. Theor. Probab.

  33. Sznitman, A.-S.: Topics in propagation of chaos. Springer, Berlin (1991)

    Book  Google Scholar 

  34. Wang, F. -Y.: Distribution dependent SDEs for Landau type equations. Stoch. Proc. Appl. 128, 595–621 (2018)

  35. Wang, F.-Y.: Ergodicity and Feyman-Kac Formula for Space-Distribution Valued Diffusion Processes, arXiv:1904.06795

  36. Yan, L.: The Euler scheme with irregular coefficients. Ann. Probab. 30, 1172–1194 (2002)

    Article  MathSciNet  Google Scholar 

  37. Zhang, X.: A discretized version of Krylov’s estimate and its applications, arXiv:1909.09976

  38. Zhang, X.: Stochastic differential equations with Sobolev drifts and driven by α-stable processes. Ann. IH Poincáre-PR 49, 1057–1079 (2013)

  39. Zvonkin, A. K.: A transformation of the phase space of a diffusion process that removes the drift. Math. Sb. 93, 129–149 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen-Fen Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by NNSFC (11801406).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yang, FF. Distribution-dependent SDEs with Hölder continuous drift and α-stable noise. Numer Algor 86, 813–831 (2021). https://doi.org/10.1007/s11075-020-00913-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00913-w

Keywords

Mathematics Subject Classification 2010

Navigation