Skip to main content
Log in

Switching preconditioners using a hybrid approach for linear systems arising from interior point methods for linear programming

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In general, interior point methods are successful in solving large-scale linear programming problems. Their effectiveness is determined by how fast they calculate each solution of a linear system. When solving large-scale linear systems, iterative methods are useful options since they require slightly more computational memory in each iteration and preserve the sparsity pattern of the matrix system. In this context, a common choice is the conjugate gradient method using a preconditioning strategy. Choosing a single preconditioner that fits well during all iterations of the optimization method is not an easy task, because the distribution of the eigenvalues of the system matrix may vary significantly from the first to the last iterations. In order to simplify this task, one can use different preconditioners in different iterations, in a hybrid preconditioner strategy. In the case of symmetric positive definite systems, the Controlled Cholesky Factorization achieves excellent performance for the first interior point iterations, whereas the Splitting preconditioner is very useful in the last iterations. However, since we apply a hybrid approach combining both preconditioners, it is necessary to decide when using each preconditioner. This paper addresses the critical issue of choosing between the two preconditioners of the hybrid strategy by using the condition number of the matrix system. The Ritz values obtained from the conjugate gradient method provide an approximation to the eigenvalues, which offers an estimate of the condition number. The main contribution of this research is a new heuristic to switching the preconditioners based on the estimated condition number. Numerical results for large-scale problems show that our choice to change the preconditioners adds both speed and robustness to a hybrid approach that combines the Controlled Cholesky Factorization and the Splitting preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput.Phys. 182(2), 418–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bocanegra, S., Campos, F.F., Oliveira, A.R.: Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods. Comput. Optim. Appl. 36(2-3), 149–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bocanegra, S., Castro, J., Oliveira, A.R.: Improving an interior-point approach for large block-angular problems by hybrid preconditioners. Eur. J. Oper. Res. 231(2), 263–273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D.: Stopping criteria for inner iterations in inexact potential reduction methods: a computational study. Comput. Optim. Appl. 36(2-3), 165–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campos, F.F., Birkett, N.R.C.: An efficient solver for multi-right hand side linear systems based on the CCCG(η) method with applications to implicit time-dependent partial differential equations. SIAM J. Sci. Comput. 19(1), 126–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carden, R.L., Embree, M.: Ritz value localization for non-hermitian matrices. SIAM Journal on Matrix Analysis and Applications 33(4), 1320–1338 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casacio, L., Lyra, C., Oliveira, A., Castro, C.O.: Improving the preconditioning of linear systems from interior point methods. Computers & Operations Research 85, 129–138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casacio, L., Oliveira, A.R.L., Lyra, C.: Using groups in the splitting preconditioner computation for interior point methods. 4OR Q. J. Oper. Res. 16, 401–410 (2018)

    Article  MATH  Google Scholar 

  10. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx: An interior-point code for linear programming. Optimization Methods and Software 11(1-4), 397–430 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Apuzzo, M., De Simone, V., Di Serafino, D.: On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods. Comput. Optim. Appl. 45(2), 283–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, K.: Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Natl. Acad. Sci. 37(11), 760–766 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghidini, C., Oliveira, A., Sorensen, D.: Computing a hybrid preconditioner approach to solve the linear systems arising from interior point methods for linear programming using the gradient conjugate method. Annals of Management Science 3, 45–66 (2014)

    Article  Google Scholar 

  15. Ghidini, C.T., Oliveira, A., Silva, J., Velazco, M.: Combining a hybrid preconditioner and a optimal adjustment algorithm to accelerate the convergence of interior point methods. Linear Algebra Appl. 436(5), 1267–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix computations. JHU Press (2012)

  17. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems, vol. 49 NBS (1952)

  19. Jia, Z., Stewart, G.: An analysis of the Rayleigh–Ritz method for approximating eigenspaces. Math. Comput. 70(234), 637–647 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jones, M.T., Plassmann, P.E.: An improved incomplete cholesky factorization. ACM Trans. Math. Softw. 21(1), 5–17 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kardani, O., Lyamin, A., Krabbenhøft, K.: Application of a GPU-accelerated hybrid preconditioned conjugate gradient approach for large 3D problems in computational geomechanics. Computers & Mathematics with Applications 69(10), 1114–1131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Governm. Press Office Los Angeles, CA (1950)

  23. Lin, C.J., Moré, J.J.: Incomplete cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21(1), 24–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maros, I., Mészáros, C.: A repository of convex quadratic programming problems. Optimization Methods and Software 11(1-4), 671–681 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meijerink, J., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Mathematics of Computation 31(137), 148–162 (1977)

    MathSciNet  MATH  Google Scholar 

  27. Oliveira, A.R.L., Sorensen, D.C.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra and its Applications 394, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Potra, F.A., Wright, S.J.: Interior-point methods. J. Comput. Appl. Math. 124(1), 281–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Suñagua, P., Oliveira, A.R.: A new approach for finding a basis for the splitting preconditioner for linear systems from interior point methods. Comput. Optim. Appl. 111–127 (2017)

  30. Teng, Z., Lu, L., Li, R.C.: Accuracy of Rayleigh—Ritz approximations. Tech. rep., Department of Mathematics, The University of Texas, Arlington (2015)

  31. Velazco, M., Oliveira, A.R., Campos, F.: A note on hybrid preconditioners for large-scale normal equations arising from interior-point methods. Optimization Methods & Software 25(2), 321–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wathen, A.J.: Preconditioning. Acta Numerica 24, 329–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wright, S.J.: Primal-dual interior-point methods. SIAM (1997)

Download references

Acknowledgments

The authors acknowledge the anonymous reviewers for their helpful comments. The authors thank the Brazilian Council for Scientific and Technological Development (CNPq), the State of São Paulo Research Foundation (FAPESP), and the Brazilian Council for the Improvement of Higher Education (CAPES) for their financial support.

Funding

This study was partially supported the Brazilian Council for Scientific and Technological Development (CNPq), the State of São Paulo Research Foundation (FAPESP), and the Brazilian Council for the Improvement of Higher Education (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Ribeiro Leite Oliveira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartmeyer, P.M., Bocanegra, S. & Oliveira, A.R.L. Switching preconditioners using a hybrid approach for linear systems arising from interior point methods for linear programming. Numer Algor 86, 397–424 (2021). https://doi.org/10.1007/s11075-020-00893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00893-x

Keywords

Navigation