Skip to main content
Log in

Mixed finite element methods for the Oseen problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop and analyze mixed finite element methods for the Oseen problem using the tensor gradient of velocity as a new unknown. We prove that the new variational formulation and the corresponding Galerkin scheme are well-posed. We also provide optimal order error estimates for the velocity, the pressure, and the gradient of velocity when each row of the velocity gradient is approximated by Raviart–Thomas elements and the velocity and the pressure are approximated by discontinuous piecewise polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, T., Knopp, T., Lube, G.: Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem. Appl. Numer. Math. 58, 1830–1843 (2008)

    Article  MathSciNet  Google Scholar 

  2. Barrenechea, G. R., Valentin, F.: A residual local projection method for the Oseen equation. Comput. Methods Appl. Mech. Engrg. 199, 1906–1921 (2010)

    Article  MathSciNet  Google Scholar 

  3. Barrios, T. P., Cascón, J. M., Gonzaález, M.: Augmented mixed finite element metod for the Oseen Problem: A priori and a posteriori error analyses. Comput. Methods Appl. Mech. Engrg. 313, 216–238 (2017)

    Article  MathSciNet  Google Scholar 

  4. Belliveau, S. M.: Analyse d’une méthode d’éléments finis mixte duale avec hybridation pour le problème d’Oseen, Thèse de maîtrise, Université de Moncton, N.B. Canada (2018)

  5. Braak, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196, 853–866 (2007)

    Article  MathSciNet  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer–Verlag, New York (2013)

    Book  Google Scholar 

  7. Brezzi, F., Douglas, J., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)

    Article  MathSciNet  Google Scholar 

  8. Brezzi, F., Douglas, J., Marini, L. D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, Berlin (1991)

    Book  Google Scholar 

  10. Brooks, A. N., Hughes, T. J. R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 267, 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  11. Camaño, J., Oyarzúa, R., Tierra, G.: Analysis of an augmented mixed–FEM for the Navier–Stokes problem. Math. Comp. 86, 589–615 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P. G.: The finite element method for elleptic problems, North Holland Amsetrdam (1978)

  13. Codina, R.: Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58, 264–283 (2008)

    Article  MathSciNet  Google Scholar 

  14. Colmenares, E., Gatica, G. N., Oyarzúa, R.: Analysis of an augmented mixed–primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Diff. Equ. 32, 445–478 (2016)

    Article  MathSciNet  Google Scholar 

  15. Farhloul, M.: Mixed and nonconforming finite element methods for the Stokes problem. Can. Appl. Math. Quart. 3, 399–418 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Farhloul, M., Fortin, M.: A new mixed finite element for the Stokes and elasticity problems. SIAM J. Numer. Anal. 30, 971–990 (1993)

    Article  MathSciNet  Google Scholar 

  17. Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems : a unified approach. Numer. Math. 76, 419–440 (1997)

    Article  MathSciNet  Google Scholar 

  18. Farhloul, M., Fortin, M.: Review and complements on mixed–hybrid finite element methods for fluid flows. J. Comput. Appl. Math. 140, 301–313 (2002)

    Article  MathSciNet  Google Scholar 

  19. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf–sup stable finite elements. J. Sci. Comput. 66, 991–1024 (2016)

    Article  MathSciNet  Google Scholar 

  20. Girault, V., Raviart, P. -A.: Finite element methods for navier–stokes equations: Theory and algorithms. Springer–Verlag, New York (1986)

    Book  Google Scholar 

  21. Nédélec, J. C.: Mixed finite elements in \(\mathbb {R}^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  22. Raviart, P. -A., Thomas, J. M.: A mixed finite element method for second order elliptic problems. In: Mathematical aspects of the finite element method, (I. Galligani, E. Magenes, eds.), Lectures notes in mathematics, vol. 606. Springer, Berlin (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhloul.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhloul, M. Mixed finite element methods for the Oseen problem. Numer Algor 84, 1431–1442 (2020). https://doi.org/10.1007/s11075-020-00879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00879-9

Keywords

Navigation