Skip to main content
Log in

Analytical and numerical analysis of time fractional dual-phase-lag heat conduction during short-pulse laser heating

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this study, we analytically and numerically investigate the non-Fourier heat conduction behavior within a finite medium based on the time fractional dual-phase-lag model. Firstly, the time fractional dual-phase-lag model and the corresponding fractional heat conduction equation for short-pulse laser heating is built. Laplace and Fourier cosine transforms are performed to derive the semi-analytical expression of temperature distribution in the Laplace domain. Then, by the L1 approximation for the Caputo derivative, the finite difference algorithm is developed for the short-pulse laser heating problem. The solvability, stability, and convergence of this algorithm are also examined. Meanwhile, the efficiency and accuracy of this method have been verified by using three numerical examples. Finally, based on numerical analysis, we study the non-Fourier heat conduction behavior and discuss the effect of variability of parameters, such as fractional parameter and the ratio between the relaxation and retardation times, on the temperature distribution graphically. We believe that this analysis, besides benefiting the laser heating applications, will also provide a deep theoretical insight to interpret the anomalous heat transport process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yilbas, B. S.: Laser heating application. Elsevier, Amsterdam (2012)

    Google Scholar 

  2. Yilbas, B. S., Al-Dweik, A. Y., Al-Aqeeli, N., Al-Qahtani, H. M.: Laser pulse heating of surfaces and thermal stress analysis. Springer, Heidelberg (2014)

    Google Scholar 

  3. Wang, L. Q., Zhou, X. S., Wei, X. H.: Heat conduction: mathematical models and analytical solutions. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Tzou, D. Y.: Macro- to micro-scale heat transfer: the lagging behavior, 2nd edn. Wiley, Chichester (2015)

    Google Scholar 

  5. Qi, H. T., Jiang, X. Y.: Solutions of the space-time fractional Cattaneo diffusion equation. Physica A 390, 1876–1883 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Jiang, F. M., Liu, D. Y., Zhou, J. H.: Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale. Therm Eng. 6, 331–346 (2002)

    Google Scholar 

  7. Tzou, D. Y.: Experiment support for the lagging behavior in heat propagation. J. Thermophys Heat Transfer 9, 686–693 (1995)

    Google Scholar 

  8. Antaki, P. J.: Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int. J. Heat Mass Transfer 41, 2253–2258 (1998)

    MATH  Google Scholar 

  9. Tang, D. W., Araki, N.: Non-Fourier heat condution behavior in finite mediums under pulse surface heating. Mat. Sci. Eng. A 292, 173–178 (2000)

    Google Scholar 

  10. Tzou, D. Y., Chiu, K. S.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transfer. 44, 1725–1734 (2001)

    MATH  Google Scholar 

  11. Shen, B., Zhang, P.: Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. Int. J. Heat Mass Transfer. 51, 1713–1727 (2008)

    MATH  Google Scholar 

  12. Ramadan, K., Tyfour, W. R., Al-Nimr, M. A.: On the analysis of short-pulse laser heating of metals using the dual phase lag heat conduction model. J. Heat Transfer. 131, 111301 (2009)

    Google Scholar 

  13. Lee, H. L., Chen, W. L., Chang, W. J., Wei, E. J., Yang, Y. C.: Analysis of dual-phase-lag heat conduction in short-pulse laser heating of metals with a hybrid method. Appl. Therm. Eng. 52, 275–283 (2013)

    Google Scholar 

  14. Majchrzak, E., Mochnacki, B.: Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of FDM. Int. J. Therm. Sci. 133, 240–251 (2018)

    Google Scholar 

  15. Fan, Q. M., Lu, W. Q.: A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium. Int. J. Heat Mass Transfer 45, 2815–2821 (2002)

    MATH  Google Scholar 

  16. Dai, W. Z., Han, F., Sun, Z. Z.: Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction. Int. J. Heat Mass Transfer 64, 966–975 (2013)

    Google Scholar 

  17. Zhou, J. H., Zhang, Y. W., Chen, J. K.: An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues. Int. J. Therm. Sci. 48, 1477–1485 (2009)

    Google Scholar 

  18. Afrin, N., Zhou, J. H., Zhang, Y. W., Tzou, D. Y., Chen, J. K.: Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transfer Part A Appl. 61, 483–501 (2012)

    Google Scholar 

  19. Liu, K. C., Chen, Y. S.: Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. Int. J. Therm. Sci. 103, 1–9 (2016)

    Google Scholar 

  20. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  21. Magin, R. L.: Fractional calculus in bioengineering connecticut: Begell House (2006)

  22. Mainardi, F.: Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London (2010)

  23. Monje, C. A., Chen, Y. Q., Vinagre, B. M., Xue, D. Y., Feliu, V.: Fractional-order systems and controls: Fundamentals and applications. Springer, London (2010)

    MATH  Google Scholar 

  24. Qi, H. T., Xu, H. Y., Guo, X. W.: The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 66, 824–831 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Xu, H. Y., Qi, H. T., Jiang, X. Y.: Fraction Cattaneo heat equation in a semi-infinite medium. Chinese Phys. B 22, 338–343 (2013)

    Google Scholar 

  26. Ezzat, M. A., El-Karamany, A. S., Fayik, M. A.: Fractional ultrafast laser-induced thermo-elastic behavior in metal films. J. Therm. Stresses 35, 637–651 (2012)

    Google Scholar 

  27. Ezzat, M. A., El Karamany, A. S., Fayik, M. A.: Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch. Appl. Mech. 82, 557–572 (2012)

    MATH  Google Scholar 

  28. Ezzat, M. A., El-Bary, A. A., Fayik, M. A.: Fractional Fourier law with three-phase lag of thermoelasticity. Mech. Adv. Mater. Struc. 20, 593–602 (2013)

    Google Scholar 

  29. Ferrás, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. M., Rebelo, M. S.: Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fract. Calc. Appl. Anal. 18, 1080–1106 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Xu, H. Y., Jiang, X. Y.: Time fractional dual-phase-lag heat conduction equation. Chinese Phys. B 24, 034401 (2015)

    Google Scholar 

  31. Kumar, D., Rai, K. N.: Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. J. Therm. Biol. 67, 49–58 (2017)

    Google Scholar 

  32. Mishra, T. N., Rai, K. N.: Numerical solution of FSPL heat conduction equation for analysis of thermal propagation. Appl. Math. Comput. 273, 1006–1017 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Ji, C. C., Dai, W. Z., Sun, Z. Z.: Numerical method for solving the time-fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition. J. Sci. Comput. 75, 1307–1336 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, X.Y., Cheng, Z.T., Li, X.F.: Non-Fourier fractional heat conduction in two bonded dissimilar materials with a penny-shaped interface crack. Int. J. Therm. Sci. 140, 319–328 (2019)

    Google Scholar 

  35. Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model of Ambartsumian equation. Eur. Phys. J. Plus 133, 259 (2018)

    Google Scholar 

  36. Goswami, A., Singh, J., Kumar, D.: Sushila: An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A 524, 563–575 (2019)

    MathSciNet  Google Scholar 

  37. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y. Q., Vinagre Jara, B. M.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Li, X. J., Xu, C. J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Li, C. P., Zeng, F. H., Liu, F. W.: Spectral approximations to the fractional integral and derivative. Frac. Calc. Appl. Anal. 15, 383–406 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46, 536–553 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Feng, L. B., Zhuang, P., Liu, F., Turner, I., Gu, Y. T.: Finite element method for space-time fractional diffusion equation. Numer. Algorit. 72, 749–767 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Li, C. P., Zeng, F. H.: Numerical methods for fractional calculus. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  44. Alikhanov, A. A.: Stability and convergence of difference schemes approximating a two-parameter non-local boundary value problem for time-fractional diffusion equation. Comput. Math. Model. 26, 252–272 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Feng, L.B., Liu, F.W., Turner, I., Zheng, L.C.: Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD couette flow of a generalized oldroyd-B fluid. Fract. Calc. Appl. Anal. 21, 1073–1103 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. algor. 73, 445–476 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Tayebi, A., Shekari, Y., Heydari, M. H.: A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Kumar, A., Bhardwaj, A., Rathish Kumar, B. V.: A meshless local collocation method for time fractional diffusion wave equation. Comput. Math. Appl. 78, 1851–1861 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Kumar, D., Singh, J., Baleanu, D.: A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91, 307–317 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Odibat, Z. M., Shawagfeh, N. T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Jiang, X.Y., Qi, H.T.: Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A: Math. Theor. 45, 485101 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Qiu, T. Q., Tien, C. L.: Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transfer 115, 835–841 (1993)

    Google Scholar 

  54. Debnath, M., Bhatta, D.: Integral transforms and their applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  55. Sun, Z. Z.: Numerical methods of partial differential equations, 2nd edn. Science Press, Beijing (2012). (in Chinese)

    Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (Grant Nos. 11672163, 11771254), the Natural Science Foundation of Shandong Province (Grant No. ZR2015AM011), and the Fundamental Research Funds for the Central Universities (Grant No. 2019ZRJC002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Qi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, H. & Qi, H. Analytical and numerical analysis of time fractional dual-phase-lag heat conduction during short-pulse laser heating. Numer Algor 85, 1385–1408 (2020). https://doi.org/10.1007/s11075-019-00869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00869-6

Keywords

Navigation