Skip to main content
Log in

The asymptotic approximations to linear weakly singular Volterra integral equations via Laplace transform

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, the asymptotic expansions for the solution about zero and infinity are formulated via Laplace transform for linear Volterra integral equation with weakly singular convolution kernel. The expansions about zero and infinity, as well as their Padé approximations, are used to approximate the solution when the argument is small and large, respectively, and the Padé approximations are more accurate. The methods are also valid to solve some other Volterra type integral equations including linear Volterra integro-differential equations, fractional integro-differential equations, and system of singular Volterra integral equations of the second kind with convolution kernels. Some examples confirm the correctness of the methods and the effectiveness of the asymptotic expansions. They show that numerical methods are only necessary in a small interval in practical computation when uniform high precision evaluations are needed for solving these kinds of Volterra integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allaei, S. S., Diogo, T., Rebelo, M.: Analytical and computational methods for a class of nonlinear singular integral equations. Appl. Numer. Math. 114, 2–17 (2017)

    Article  MathSciNet  Google Scholar 

  2. Brezinski, C., Ieea, U., Iseghem, J. V.: A taste of Padé approximation. Acta Numerica 4, 53–103 (1995)

    Article  Google Scholar 

  3. Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20, 1106–1119 (1983)

    Article  MathSciNet  Google Scholar 

  4. Brunner, H.: Collocation methods for Volterra integral and related functional equations. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Cao, Y. Z., Herdman, T., Xu, Y. S.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2004)

    Article  MathSciNet  Google Scholar 

  6. Coffey, M. W.: A set of identities for a class of alternating binomial sums arising in computing applications. Util. Math. 76, 79–90 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Cohen, A. M.: Numerical methods for Laplace transform inversion. Springer Science+Business Media, LLC, New York (2007)

    MATH  Google Scholar 

  8. Derbenev, V. A., Tsalyuk, Z. B.: Asymptotic behavior of the resolvent of an unstable Volterra equation with kernel depending on the difference of the arguments. Math. Notes 6, 74–79 (1997)

    Article  Google Scholar 

  9. Diogo, T., Ma, J. T., Rebelo, M.: Fully discretized collocation methods for nonlinear singular Volterra integral equations. J. Comput. Appl. Math. 247, 84–101 (2013)

    Article  MathSciNet  Google Scholar 

  10. Friedman, A.: On integral equations of Volterra type. J. Anal. Math. 11, 381–413 (1963)

    Article  MathSciNet  Google Scholar 

  11. Gorenflo, R., Vessella, S.: Abel integral equations. Springer-Verlag, Berlin (1991)

    Book  Google Scholar 

  12. Handelsman, R. A., Olmstead, W. E.: Asymptotic solution to a class of nonlinear Volterra integral equations. SIAM J. Appl. Math. 22, 373–384 (1972)

    Article  MathSciNet  Google Scholar 

  13. Jumarhon, B., McKee, S.: Product integration methods for solving a system of nonlinear Volterra integral equations. J. Comput. Appl. Math. 69, 285–301 (1996)

    Article  MathSciNet  Google Scholar 

  14. Kilbas, A. A., Saigo, M.: On solution of integral equation of Abel-Volterra type. Differential Integral Equations 8, 993–1011 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Kilbas, A. A., Saigo, M.: On solution of nonlinear Abel-Volterra integral equation. J. Appl. Math. Anal. Appl. 229, 41–60 (1999)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. Elsevier Science Ltd, Amsterdam (2006)

    MATH  Google Scholar 

  17. Kumar, I. J.: On the asymptotic solution of a nonlinear Volterra integral equation. Proc. R. Soc. Lond. A 324, 45–61 (1971)

    Article  MathSciNet  Google Scholar 

  18. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer-Verlag, Berlin (1973)

    Book  Google Scholar 

  19. Olmstead, W. E., Handelsman, R. A.: Asymptotic solution to a class of nonlinear Volterra integral equations(II). SIAM J. Appl. Math. 30, 180–189 (1976)

    Article  MathSciNet  Google Scholar 

  20. Olver, F. W. J.: Asymptotics and special functions. Academic Press, New York (1974)

    MATH  Google Scholar 

  21. Polyanin, A. D., Manzhirov, A. V.: Handbook of Integral Equations, 2nd edn. Chapman & Hall/CRC, London (2008)

    Book  Google Scholar 

  22. Taghvafard, H., Erjaee, C. H.: On solving a system of singular Volterra integral equations of convolution type. Commun. Nonlinear Sci. Numer. Simul. 16, 3486–3492 (2011)

    Article  MathSciNet  Google Scholar 

  23. Trivedi, V. K., Kumar, I. J.: On a Mellin transform technique for the asymptotic solution of a nonlinear Volterra integral equation. Proc. R. Soc. Lond. A 352, 339–349 (1977)

    Article  MathSciNet  Google Scholar 

  24. Wang, T. K., Li, N., Gao, G. H.: The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order singularities. Int. J. Comput. Math. 92, 579–590 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, T. K., Liu, Z. F., Zhang, Z. Y.: The modified composite Gauss type rules for singular integrals using Puiseux expansions. Math. Comp. 86, 345–373 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wang, T. K., Zhang, Z. Y., Liu, Z. F.: The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions. Adv. Comput. Math. 43, 319–350 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wang, T. K., Gu, Y. S., Zhang, Z. Y.: An algorithm for the inversion of Laplace transforms using Puiseux expansions. Numer. Algorithms 78, 107–132 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wazwaz, A. M.: Linear and Nonlinear Integral Equations (Methods and Applications). Higher Education Press, Beijing and Springer-Verlag, Berlin Heidelberg (2011)

  29. Wong, J. S. W., Wong, R.: Asymptotic solutions of linear Volterra integral equations with singular kernels. Trans. Amer. Math. Soc. 189, 185–200 (1974)

    Article  MathSciNet  Google Scholar 

  30. Wyman, M., Wong, R.: The asymptotic behavior of μ(z,β,α). Canad. J. Math. 21, 1013–1023 (1969)

    Article  Google Scholar 

  31. Yang, C. Q., Hou, J. H.: Numerical method for solving Volterra integral equations with a convolution kernel. IAENG Int. J. Appl. Math. 43, 185–189 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the referees for their helpful suggestions and comments, which significantly improve the quality of the paper.

Funding

This project is supported by the Program for Innovative Research Team in Universities of Tianjin (TD13-5078) and the Doctor Foundation of Tianjin Normal University (52XB1515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongke Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Qin, M. & Lian, H. The asymptotic approximations to linear weakly singular Volterra integral equations via Laplace transform. Numer Algor 85, 683–711 (2020). https://doi.org/10.1007/s11075-019-00832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00832-5

Keywords

Mathematics Subject Classification (2010)

Navigation