Skip to main content

Advertisement

Log in

Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The phase-field crystal equation is a sixth-order nonlinear parabolic equation and can be applied to simulate various phenomena such as epitaxial growth, material hardness, and phase transition. We propose a series of efficient modified stabilized invariant energy quadratization approaches with unconditional energy stability for the phase-field crystal model. Firstly, we propose a more suitable positive preserving function strictly in square root and consider a modified invariant energy quadratization (MIEQ) approach. Secondly, a series of efficient and suitable functionals H(ϕ) in square root are considered and the modified stabilized invariant energy quadratization (MSIEQ) approaches are developed. We prove the unconditional energy stability and optimal error estimates for the semi-discrete schemes carefully and rigorously. A comparative study of classical IEQ, MIEQ, and MSIEQ approaches is considered to show the accuracy and efficiency. Finally, we present various 2D numerical simulations to demonstrate the stability and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bates, P.W., Brown, S., Han, J.: Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Mod 6, 33–49 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Shen, J.: Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models. J. Comput. Phys. 308, 40–56 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Mohammadi, V.: The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local meshless methods. Comput. Methods Appl. Mech. Eng. 298, 453–484 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation. J. Comput. Phys. 363, 39–54 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS Online Proceedings Library Archive, 529 (1998)

  10. Feng, W., Guan, Z., Lowengrub, J., Wang, C., Wise, S.M., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn–Hilliard equation and its convergence analysis. J. Sci. Comput. 76, 1938–1967 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. 34, 1975–2007 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Grasselli, M., Pierre, M.: Energy stable and convergent finite element schemes for the modified phase field crystal equation. ESAIM: Math. Modell. Numer. Anal. 50, 1523–1560 (2016)

    MathSciNet  MATH  Google Scholar 

  13. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Lee, H.G., Kim, J.: A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces. Comput. Methods Appl. Mech. Eng. 307, 32–43 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Li, H., Ju, L., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with Peng–Robinson equation of state. J. Sci. Comput. 75, 993–1015 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Li, Q., Mei, L., Yang, X., Li, Y.: Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Advances in Computational Mathematics, pp. 1–30 (2019)

  18. Li, Y., Kim, J.: An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation. Comput. Methods Appl. Mech. Eng. 319, 194–216 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations. Math. Methods Appl. Sci. 38, 4564–4575 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Liu, Z., Li, X.: Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl. Math. Lett. 98, 206–214 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model. Numer. Methods Partial Differ. Equ. 29, 584–618 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Praetorius, S., Voigt, A.: A Navier-Stokes phase-field crystal model for colloidal suspensions. J. Chem. Phys. 142, 154904 (2015)

    Google Scholar 

  23. Qiao, Z., Sun, Z. -Z., Zhang, Z.: The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model. Numer. Methods Partial Differ. Equ. 28, 1893–1915 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Cont. Dyn-A 28, 1669–1691 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Shin, J., Lee, H.G., Lee, J. -Y.: First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 327, 519–542 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Weng, Z., Zhai, S., Feng, X.: A fourier spectral method for fractional-in-space Cahn–Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys. 23, 572–602 (2018)

    MathSciNet  Google Scholar 

  32. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Yang, X., Han, D.: Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Yang, X., Zhang, G.: Numerical approximations of the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential using the Invariant Energy Quadratization approach, arXiv:1712.02760 (2017)

  35. Zhang, L., Zhou, Z.: Spectral galerkin approximation of optimal control problem governed by Riesz fractional differential equation. Appl. Numer. Math. 143, 247–262 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Zhou, Z., Chen, F., Chen, H.: Convergence analysis for H1-Galerkin mixed finite element approximation of one nonlinear integro-differential model. Appl. Math. Comput. 220, 783–791 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Zhou, Z., Yu, X., Yan, N.: Local discontinuous Galerkin approximation of convection-dominated diffusion optimal control problems with control constraints. Numer. Methods Partial Differ. Equ. 30, 339–360 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Zhou, Z., Zhang, C.: Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation. Numer. Algorithm. 79, 437–455 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Zhu, J., Chen, L.-Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E. 60, 3564 (1999)

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.

Funding

The author thanks for the financial support from the China Scholarship Council. This work is supported by the Postdoctoral Science Foundation of China under grant nos. BX20190187 and 2019M650152 and by the National Natural Science Foundation of China (grant nos. 11931003, 41974133, 11901489, 11971276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, X. Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer Algor 85, 107–132 (2020). https://doi.org/10.1007/s11075-019-00804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00804-9

Keywords

Mathematics Subject Classification (2010)

Navigation