Skip to main content
Log in

Low-rank updates and divide-and-conquer methods for quadratic matrix equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we consider two types of large-scale quadratic matrix equations: continuous-time algebraic Riccati equations, which play a central role in optimal and robust control, and unilateral quadratic matrix equations, which arise from stochastic processes on 2D lattices and vibrating systems. We propose a simple and fast way to update the solution to such matrix equations under low-rank modifications of the coefficients. Based on this procedure, we develop a divide-and-conquer method for quadratic matrix equations with coefficients that feature a specific type of hierarchical low-rank structure, which includes banded matrices. This generalizes earlier work on linear matrix equations. Numerical experiments indicate the advantages of our newly proposed method versus iterative schemes combined with hierarchical low-rank arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Preliminary results suggest that replacing Algorithm 1 with RADI reduces the time by 10% on average over all used sizes n.

References

  1. Abels, J., Benner, P.: CAREX - a collection of benchmark examples for continuous-time algebraic Riccati equations (Version 2.0). SLICOT working note 1999–14 (1999)

  2. Ambikasaran, S., Darve, E.: An \(\mathcal {O}(n\log N)\) fast direct solver for partial hierarchically semi-separable matrices: with application to radial basis function interpolation. J. Sci. Comput. 57(3), 477–501 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Baur, U., Benner, P.: Factorized solution of Lyapunov equations based on hierarchical matrix arithmetic. Computing 78(3), 211–234 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Beckermann, B., Reichel, L.: Error estimates and evaluation of matrix functions via the Faber transform. SIAM J. Numer. Anal. 47(5), 3849–3883 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Beckermann, B., Townsend, A.: On the singular values of matrices with displacement structure. SIAM J. Matrix Anal. Appl. 38(4), 1227–1248 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Benner, P., Bollhöfer, M., Kressner, D., Mehl, C., Stykel, T.: Numerical algebra, matrix theory, differential-algebraic equations and control theory. Springer International Publishing (2015)

  7. Benner, P., Bujanović, Z., Kürschner, P., Saak, J.: A numerical comparison of solvers for large-scale, continuous-time algebraic Riccati equations. Technical Report 1811.00850 arXiv (2018)

  8. Benner, P., Bujanović, Z., Kürschner, P., Saak, J.: RADI: A low-rank ADI-type algorithm for large scale algebraic Riccati equations. Numer. Math. 138 (2), 301–330 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Benner, P., Byers, R., Mehrmann, V., Xu, H.: Robust numerical methods for robust control Technical Report 06-2004. Institut für Mathematik, TU Berlin (2004)

  10. Benner, P., Li, J., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15(9), 755–777 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitt. 36(1), 32–52 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Berljafa, M., Elsworth, S., Güttel, S.: A Rational Krylov Toolbox for MATLAB MIMS EPrint 2014.56, Manchester Institute for Mathematical Sciences, The University of Manchester, UK (2014)

  13. Bini, D.A., Favati, P., Meini, B.: A compressed cyclic reduction for QBD processes with low-rank upper and lower transitions. In: Matrix-analytic methods in stochastic models, volume 27 of Springer Proc. Math. Stat., pp. 25–40. Springer, New York (2013)

  14. Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations, Volume 9 of Fundamentals of Algorithms. SIAM Publications, Philadelphia (2012)

    MATH  Google Scholar 

  15. Bini, D.A., Latouche, G., Meini, B.: Numerical methods for structured Markov chains. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005). Oxford Science Publications

    MATH  Google Scholar 

  16. Bini, D.A., Massei, S., Robol, L.: Efficient cyclic reduction for quasi-birth-death problems with rank structured blocks. Appl. Numer Math. 116, 37–46 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Bini, D.A., Massei, S., Robol, L.: On the decay of the off-diagonal singular values in cyclic reduction. Linear Algebra Appl. 519, 27–53 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Bini, D.A., Meini, B.: The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. In memoriam of Gene H. Golub. Numer. Algorithms 51(1), 23–60 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Chu, E. K. -W., Fan, H. -Y., Lin, W. -W.: A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl. 396, 55–80 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  21. Datta, B.N.: Numerical linear algebra and applications, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010)

    MATH  Google Scholar 

  22. Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Cont. Lett. 60(8), 546–560 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Grasedyck, L., Hackbusch, W., Khoromskij, B.N.: Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing 70(2), 121–165 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Guo, C., Higham, N.J., Tisseur, F.: Detecting and solving hyperbolic quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl. 30(4), 1593–1613 (2008/09)

  25. Guo, X., Lin, W., Xu, S.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer Math. 103(3), 393–412 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Güttel, S.: Rational Krylov methods for operator functions. PhD thesis, TU Freiberg (2010)

  27. Hackbusch, W.: Hierarchical matrices: algorithms and analysis, Volume 49 of Springer Series in Computational Mathematics. Springer, Berlin (2015)

    Google Scholar 

  28. Heyouni, M.: Extended Arnoldi methods for large low-rank Sylvester matrix equations. Appl. Numer. Math. 60(11), 1171–1182 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Higham, N.J., Kim, H.: Numerical analysis of a quadratic matrix equation. IMA J. Numer Anal. 20(4), 499–519 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Kressner, D., Massei, S., Robol, L.: Low-rank updates and a divide-and-conquer method for linear matrix equations. SIAM J. Sci. Comput. 41(2), A848–A876 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Feng, E.B., Rudnyi L., Koziol, D., Korvink, J.G.: Parametric model reduction for fast simulation of cyclic voltammograms. Sens. Lett. 4(2), 165–173 (2006)

    Google Scholar 

  32. Lancaster, P.: Lambda-matrices and vibrating systems. Dover Publications, Inc., Mineola (2002). Reprint of the 1966 original [Pergamon Press, New York; MR0210345 (35 #1238)]

    MATH  Google Scholar 

  33. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  34. Lang, N., Mena, H., Saak, J.: On the benefits of the LDLT factorization for large-scale differential matrix equation solvers. Linear Algebra Appl. 480, 44–71 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM Series on Statistics and Applied Probability. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999). American Statistical Association, Alexandria, VA

    MATH  Google Scholar 

  36. Locatelli, A.: Optimal control: an introduction. Basel, Switzerland (2001)

    MATH  Google Scholar 

  37. Massei, S., Robol, L.: MATLAB toolbox for HODLR and HSS matrices: hm-toolbox. Available at https://github.com/numpi/hm-toolbox (2017)

  38. Mehrmann, V., Tan, E.: Defect correction methods for the solution of algebraic Riccati equations. IEEE Trans Automat. Control 33(7), 695–698 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Melman, A.: Generalization and variations of Pellet’s theorem for matrix polynomials. Linear Algebra Appl. 439(5), 1550–1567 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Miyazawa, M.: Tail decay rates in double QBD processes and related reflected random walks. Math. Oper. Res. 34(3), 547–575 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Ruhe, A.: The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices. BIT Numer. Math. 34(1), 165–176 (1994)

    MathSciNet  MATH  Google Scholar 

  42. Ruhe, A.: Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19(5), 1535–1551 (1998)

    MathSciNet  MATH  Google Scholar 

  43. Russell, D.L.: Mathematics of Finite-Dimensional Control Systems, volume 43 of Lect. Notes Pure Appl Math. Marcel Dekker Inc., New York (1979)

    Google Scholar 

  44. Seneta, E.: Non-negative matrices and Markov chains. Springer Series in Statistics. Springer, New York (2006). Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544]

    MATH  Google Scholar 

  45. Sima, V.: Algorithms for linear-quadratic optimization, volume 200 of Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1996)

    Google Scholar 

  46. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37(4), 1655–1674 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Simoncini, V., Szyld, D.B., Monsalve, M.: On two numerical methods for the solution of large-scale algebraic Riccati equations. IMA J. Numer. Anal. 34(3), 904–920 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Starke, G.: Near-circularity for the rational Zolotarev problem in the complex plane. J. Approx. Theory 70(1), 115–130 (1992)

    MathSciNet  MATH  Google Scholar 

  50. The MORwiki Community. Scanning electrochemical microscopy MORwiki – Model Order Reduction Wiki (2018)

  51. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309(1-3), 339–361 (2000)

    MathSciNet  MATH  Google Scholar 

  52. Willems, J.C.: Least squares stationary optimal control and the algebraic Riccati Equation. IEEE Trans. Autom. Control 16, 621–634 (1971)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

During the larger part of the work on this article, the second author PK was affiliated with the Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Massei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Stefano Massei has been supported by the SNSF research project Fast algorithms from low-rank updates, grant number: 200020_178806.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kressner, D., Kürschner, P. & Massei, S. Low-rank updates and divide-and-conquer methods for quadratic matrix equations. Numer Algor 84, 717–741 (2020). https://doi.org/10.1007/s11075-019-00776-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00776-w

Keywords

Navigation