Skip to main content
Log in

Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we analyze the semilocal convergence of k-steps Newton’s method with frozen first derivative in Banach spaces. The method reaches order of convergence k + 1. By imposing only the assumption that the Fréchet derivative satisfies the Lipschitz continuity, we define appropriate recurrence relations for obtaining the domains of convergence and uniqueness. We also define the accessibility regions for this iterative process in order to guarantee the semilocal convergence and perform a complete study of their efficiency. Our final aim is to apply these theoretical results to solve a special kind of conservative systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Comput. 25, 2209–2217 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical Modelling with Applications in Biosciences and Engineering. Nova Publishers, New York (2011)

    Google Scholar 

  3. Argyros, I.K., George, S.: A unified local convergence for Jarratt-type methods in Banach space under weak conditions. Thai. J. Math. 13, 165–176 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K., Hilout, S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Argyros, I.K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev–Secant-type methods. J. Comput. Appl. Math. 235, 3195–2206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Math. Comput. Mod. 57, 1950–1956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ezquerro, J.A., Grau-Sánchez, M., Hernández, M. A., Noguera, M.: Semilocal convergence of secant-like methods for differentiable and nondifferentiable operators equations. J. Math. Anal. Appl. 398(1), 100–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Honorato, G., Plaza, S., Romero, N.: Dynamics of a higher-order family of iterative methods. J. Complexity 27(2), 221–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jerome, J.W., Varga, R.S.: Generalizations of Spline Functions and Applications to Nonlinear Boundary Value and Eigenvalue Problems, Theory and Applications of Spline Functions. Academic Press, New York (1969)

    MATH  Google Scholar 

  10. Kantorovich, L.V., Akilov, G.P.: Functional analysis Pergamon Press. Oxford (1982)

  11. Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Dover Publications, New York (1992)

    Google Scholar 

  12. Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, New York (1979)

    MATH  Google Scholar 

  13. Ortega, J.M.: The Newton-Kantorovich theorem. Amer. Math. Monthly 75, 658–660 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ostrowski, A.M.: Solutions of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973)

    MATH  Google Scholar 

  15. Plaza, S., Romero, N.: Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235(10), 3238–3244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Porter, D., Stirling, D.: Integral Equations: A Practical Treatment, From Spectral Theory to Applications. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  17. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall. Englewood Cliffs, New Jersey (1964)

    MATH  Google Scholar 

  18. Argyros, I.K., George, S.: Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds using restricted convergence domains. Journal of Nonlinear Functional Analysis 2016 (2016). Article ID 27

  19. Xiao, J.Z., Sun, J., Huang, X.: Approximating common fixed points of asymptotically quasi-nonexpansive mappings by a k+1-step iterative scheme with error terms. J. Comput. Appl. Math 233, 2062–2070 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin, X., Dehaish, B.A.B., Cho, S.Y.: Viscosity splitting methods for variational inclusion and fixed point problems in Hilbert spaces. J. Nonlinear Sci. Appl. 9, 2789–2797 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eulalia Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Verón, M.A., Martínez, E. & Teruel, C. Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numer Algor 76, 309–331 (2017). https://doi.org/10.1007/s11075-016-0255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0255-z

Keywords

Mathematics Subject Classification (2010)

Navigation