Skip to main content
Log in

Schwarz waveform relaxation method for one-dimensional Schrödinger equation with general potential

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we apply the Schwarz waveform relaxation (SWR) method to the one-dimensional Schrödinger equation with a general linear or a nonlinear potential. We propose a new algorithm for the Schrödinger equation with time-independent linear potential, which is robust and scalable up to 500 subdomains. It reduces significantly computation time compared with the classical algorithms. Concerning the case of time-dependent linear potential or the nonlinear potential, we use a preprocessed linear operator for the zero potential case as a preconditioner which leads to a preconditioned algorithm. This ensures high scalability. In addition, some newly constructed absorbing boundary conditions are used as the transmission conditions and compared numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoine, X., Besse, C., Descombes, S.: Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. SIAM J. Numer. Anal. 43 (6), 2272–2293 (2006)

    Article  MATH  Google Scholar 

  2. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential. J. Comput. Phys. 228(2), 312–335 (2009)

    Article  MATH  Google Scholar 

  3. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33(2), 1008–1033 (2011)

    Article  MATH  Google Scholar 

  4. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II: Discretization and numerical results. Numer. Math. 125(2), 191–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antoine, X., Besse, C., Szeftel, J.: Towards accurate artificial boundary conditions for nonlinear PDEs through examples. Cubo, A Math. J. 11(4), 29–48 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Antoine, X., Lorin, E., Bandrauk, A.: Domain decomposition method and high-order absorbing boundary conditions for the numerical simulation of the time dependent Schrödinger equation with ionization and recombination by intense electric field. J. Sci. Comput. 1–27 (2014)

  7. Balay, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.4. Argonne National Laboratory (2013)

  8. Caetano, F., Gander, M.J., Halpern, L., Szeftel, J.: Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations. Netw. Heterog. Media 5(3), 487–505 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolean, V., Gander, M.J., Gerardo-Giorda, L.: Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubois, O., Gander, M.J., Loisel, S., St-Cyr, A., Szyld, D.B.: The optimized Schwarz method with a coarse grid correction. SIAM J. Sci. Comput. 34 (1), A421–A458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durán, A., Sanz-Serna, J.: The numerical integration of relative equilibrium solutions. The nonlinear Schrodinger equation. IMA J. Numer. Anal. 20(2), 235–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gander, M.J.: Schwarz methods over the course of time. Electron. Trans. Numer. Anal. 31, 228–255 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halpern, L., Szeftel, J.: Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation. Tech. rep. CNRS (2006)

  16. Halpern, L., Szeftel, J.: Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation. Math. Comput. 78(266), 865–889 (2009)

    Article  MATH  Google Scholar 

  17. Halpern, L., Szeftel, J.: Optimized and quasi-optimal Schwarz waveform relaxation for the one dimensional Schrödinger equation. Math. Model. Methods Appl. Sci. 20(12), 2167–2199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoang, T., Jaffré, J., Japhet, C., Kern, M., Roberts, J.: Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal. 51(6), 3532–3559 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klein, P.: Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités. Ph.D. thesis, Université Henri Poincaré, Nancy 1 (2010)

  20. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 3.0. Tech. rep (2012)

  21. Nataf, F., Xiang, H., Dolean, V., Spillane, N.: A coarse space construction based on local Dirichlet-to-Neumann maps. SIAM J. Sci. Comput. 33(4), 1623–1642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics (2003)

  23. Szeftel, J.: Absorbing boundary conditions for one-dimensional nonlinear Schrödinger equations. Numer. Math. 104(1), 103–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xing, F.: Méthode de décomposition de domaines pour l’équation de Schrödinger. Ph.D. thesis, Université Lille 1 - Sciences et Technologies, France (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besse, C., Xing, F. Schwarz waveform relaxation method for one-dimensional Schrödinger equation with general potential. Numer Algor 74, 393–426 (2017). https://doi.org/10.1007/s11075-016-0153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0153-4

Keywords

Navigation