Skip to main content
Log in

A new approach to improve ill-conditioned parabolic optimal control problem via time domain decomposition

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we present a new steepest-descent type algorithm for convex optimization problems. Our algorithm pieces the unknown into sub-blocs of unknowns and considers a partial optimization over each sub-bloc. In quadratic optimization, our method involves Newton technique to compute the step-lengths for the sub-blocs resulting descent directions. Our optimization method is fully parallel and easily implementable, we first presents it in a general linear algebra setting, then we highlight its applicability to a parabolic optimal control problem, where we consider the blocs of unknowns with respect to the time dependency of the control variable. The parallel tasks, in the last problem, turn “on” the control during a specific time-window and turn it “off” elsewhere. We show that our algorithm significantly improves the computational time compared with recognized methods. Convergence analysis of the new optimal control algorithm is provided for an arbitrary choice of partition. Numerical experiments are presented to illustrate the efficiency and the rapid convergence of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alla, A., Falcone, M.: A time-adaptive pod method for optimal control problems. In: Proceedings of the 1st IFAC Workshop on Control of Systems Modeled by Partial Differential Equations, pp 245–250 (2013)

  2. Alla, A., Falcone, M.: An adaptive pod approximation method for the control of advection-diffusion equations. In: Control and Optimization with PDE Constraints, pp 1–17. Springer (2013)

  3. Arian, E., Fahl, M., Sachs, E.W.: Trust-region proper orthogonal decomposition for flow control. Technical report, DTIC Document (2000)

  4. Baksalary, J.K., Puntanen, S.: Generalized matrix versions of the cauchy-schwarz and kantorovich inequalities. Aequationes Mathematicae 41(1), 103–110 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, R.E., Welfert, B.D., Yserentant, H.: A class of iterative methods for solving saddle point problems. Numer. Math. 56(7), 645–666 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer.l Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belgacem, F.B., Kaber, S.M.: On the Dirichlet boundary controllability of the one-dimensional heat equation: Semi-analytical calculations and ill-posedness degree. Inverse Probl. 27(5), 055012,19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bjorstad, P., Gropp, W.: Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (2004)

  9. Borzì, A., Ito, K., Kunisch, K.: An optimal control approach to optical flow computation. Internat. J. Numer. Methods Fluids 40(1–2), 231–240 (2002). ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrd, R.H., Lopez-Calva, G., Nocedal, J.: A line search exact penalty method using steering rules. Math. Program. 133(1–2, Ser. A), 39–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carthel, C., Glowinski, R., Lions, J.-L.: On exact and approximate boundary controllabilities for the heat equation: a numerical approach. J. Optim. Theory Appl. 82(3), 429–484 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cauchy, A.-L.: Methode générale pour la résolution des systèmes d’équations simultanéeś. Compte Rendu des Scieances de L’Académie des Sciences XXV S’erie A(25), 536–538 (1847)

    Google Scholar 

  13. Choi, H., Hinze, M., Kunisch, K.: Instantaneous control of backward-facing step flows. Appl. Numer. Math. 31(2), 133–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G.: Introduction à l’analyse numérique matricielle et à l’optimisation. Collection Mathématiques Appliquées pour la Maî trise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1982)

  16. Coron, J.-M., Trélat, E.: Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43(2), 549–569 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ervedoza, S., Zuazua, E.: The wave equation: control and numerics. In: Control of Partial Differential Equations, Lecture Notes in Mathematics, pp 245–339. Springer, Berlin, Heidelberg (2012)

  18. Evans, D.J.: Preconditioning methods: theory and applications. Gordon and Breach Science Publishers, Inc. (1983)

  19. Fattorini, H.O.: Infinite-dimensional optimization and control theory, volume 62 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999)

  20. Graham, W.R., Peraire, J., Tang, K.Y.: Optimal control of vortex shedding using low-order models. I, Open-loop model development. Internat. J. Numer. Methods Engrg. 44(7), 945–972 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Graham, W.R., Peraire, J., Tang, K.Y.: Optimal control of vortex shedding using low-order models. II, Model-based control. Internat. J. Numer. Methods Engrg. 44(7), 973–990 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for newton’s method. SIAM J. Numer.l Anal. 23(4), 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grote, M.J., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gubisch, M., Stefan, V.: POD a-posteriori error analysis for optimal control problems with mixed control-state constraints. Comput. Optim. Appl. 58(3), 619–644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heinkenschloss, M.: A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. J. Comput. Appl. Math. 173(1), 169–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hinze, M., Kunisch, K.: Suboptimal control strategies for backward facing step ows. In: Proceedings of 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Editor A. Sydow, vol. 3, pp 53–58. Citeseer (1997)

  27. Hinze, M.: Optimal and Instantaneous Control of the Instationary Navier-Stokes Equations (2000)

  28. Hinze, M., Kunisch, K.: Three control methods for time-dependent fluid flow. Flow Turbul. Combust. 65(3–4), 273–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ito, K., Ravindran, S.S.: A reduced basis method for control problems governed by PDEs. In: Control and Estimation of Distributed Parameter Systems (Vorau, 1996), Volume 126 of Internat. Ser. Numer. Math., pp 153–168. Basel, Birkhäuser (1998)

  30. Ito, K., Ravindran, S.S.: Reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15(2), 97–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kantorovich, L.V.: Functional analysis and applied mathematics. NBS Rep. 1509. U. S. Department of Commerce National Bureau of Standards, Los Angeles, Calif. Translated by C. D. Benster (1952)

  32. Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701–722 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lagnese, J.E., Leugering, G.: Time-domain decomposition of optimal control problems for the wave equation. Syst. Control Lett. 48(3–4), 229–242 (2003). Optimization and control of distributed systems

    Article  MathSciNet  MATH  Google Scholar 

  34. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories. I-II, Volume 47-75 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2000). Abstract hyperbolic-like systems over a finite time horizon

  35. Lee, C., Kim, J., Choi, H.: Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245–258 (1998)

    Article  MATH  Google Scholar 

  36. Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of pde’s. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(7), 661–668 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 170. Springer, New York (1971)

  38. Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1-2, volume 8-9 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch (1988)

  39. Maday, Y., Salomon, J., Turinici, G.: Monotonic parareal control for quantum systems. SIAM J. Numer. Anal. 45(6), 2468–2482 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Maday, Y., Riahi, M.-K., Salomon, J.: Parareal in time intermediate targets methods for optimal control problems. In: Bredies, K., Clason, C., Kunisch, K., von Winckel, G. (eds.) Control and Optimization with PDE Constraints, Volume 164 of International Series of Numerical Mathematics, pp 79–92. Springer, Basel (2013)

  41. Maday, Y., Turinici, G.: A parareal in time procedure for the control of partial differential equations. C. R. Math. Acad. Sci. Paris 335(4), 387–392 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Malas, T., Gürel, L.: Incomplete lu preconditioning with the multilevel fast multipole algorithm for electromagnetic scattering. SIAM J. Sci. Comput. 29(4), 1476–1494 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Marduel, X., Kunisch, K.: Suboptimal control of transient nonisothermal viscoelastic fluid flows. Phys. Fluids (1994-present) 13(9), 2478–2491 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Micu, S., Zuazua, E.: Regularity issues for the null-controllability of the linear 1-d heat equation. Syst. Control Lett. 60(6), 406–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pironneau, O., Hecht, F., Morice, J.: freefem++, www.freefem.org/ (2013)

  46. Quarteroni, A., Valli, A.: Domain Decomposition Methods For Partial Differential Equations. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1999). Oxford Science Publications

  47. Ravindran, S.S.: Proper Orthogonal Decomposition in Optimal Control of Fluids, volume 99. National Aeronautics and Space Administration, Langley Research Center (1999)

  48. Rees, T., Stoll, M., Wathen, A.: All-at-once preconditioning in PDE-constrained optimization. Kybernetika (Prague) 46(2), 341–360 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Rüde, U.: Mathematical and computational techniques for multilevel adaptive methods. SIAM (1993)

  50. Saad, Y.: Iterative methods for sparse linear systems. Siam (2003)

  51. Scilab Enterprises: Scilab: Le logiciel open source gratuit de calcul numrique. Scilab Enterprises, Orsay, France (2012)

  52. Silvester, D., Wathen, A.: Fast iterative solution of stabilised Stokes systems. II, Using general block preconditioners. SIAM J. Numer. Anal. 31(5), 1352–1367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stoll, M., Wathen, A.: All-at-once solution of time-dependent Stokes control. J. Comput. Phys. 232, 498–515 (2013)

    Article  MathSciNet  Google Scholar 

  54. Toselli, A., Widlund, O.: Domain decomposition methods: Algorithms and theory, vol. 3. Springer (2005)

  55. Tröltzsch, F.: Optimal control of partial differential equations, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels (2010)

  56. Ulbrich, S.: Generalized sqp-methods with ?parareal? time-domain decomposition for time-dependent pde-constrained optimization. In: Real-Time PDE-constrained Optimization, vol. 3, pp 145–168. SIAM, Philadelphia (2007)

  57. Wathen, A., Silvester, D.: Fast iterative solution of stabilised Stokes systems. I, Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30(3), 630–649 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yuan, G., Wei, Z.: The Barzilai and Borwein gradient method with nonmonotone line search for nonsmooth convex optimization problems. Math. Model. Anal. 17(2), 203–216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kamel Riahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, M.K. A new approach to improve ill-conditioned parabolic optimal control problem via time domain decomposition. Numer Algor 72, 635–666 (2016). https://doi.org/10.1007/s11075-015-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0060-0

Keywords

Navigation